

PROSPECT PRecision Oscillation and SPECTrum Experiment

Jim Napolitano Temple University For the PROSPECT Collaboration

University of Manchester 8 June 2018

Outline

- Neutrinos and Nuclear Reactors
 It is difficult to calculate the spectrum and flux
- Detecting Reactor Neutrinos
 Not your "typical" high energy physics experiment
- Reactor Neutrino Oscillations
 First, the good news.
 Then, the bad news: <u>Anomalies</u>
- **PROSPECT**
- Outlook

Neutrinos and Nuclear Reactors

Intense flux of $\overline{\nu}_e$ from β -decay of neutron-rich nuclei

What is the Flux? Spectrum?

"Reactor Neutrino Spectra", Hayes and Vogel, Ann.Rev.Nucl.Part.Sci. 66 (2016) 219

Flux is easy to calculate with $\approx 20\%$ precision from power output.

Flux is very hard to calculate with 2% precision! Lots of β decay branches, heat from β decay, and the evolution of reactor fuel (especially in nuclear power plant reactors).

Alternative approach: Use "Inversion" of β decay measurements of ²³⁵U, ²³⁹Pu, ...

Detecting Reactor Neutrinos

- Reaction: $\overline{v}_e + p \rightarrow e^+ + n$ "Inverse Beta Decay" (IBD)
- Liquid scintillator (CH₂) is target (p) and active medium
- Positron energy \Rightarrow neutrino energy (ignore neutron KE)
- The neutron recoils off protons, thermalizes, and captures providing a delayed coincidence for background rejection. KamLAND: p capture (2.2 MeV photon)
 Daya Bay: Gd capture (≈8 MeV total photons)
 PROSPECT: ⁶Li (⁴He+³H, no photons)
- <u>Backgrounds</u>: Cosmic rays present a serious challenge for surface-based reactor antineutrino experiments. Also ambient radioactivity and reactor-associated effects.

The Positron Spectrum

<u>nb</u>: "Prompt" energy adds 1.0 MeV from annihilation photons, and neutrino energy also includes *np* mass difference.

Well-Shielded Detector at a Nuclear Power Plant

20-Tonne Monolithic Detector

Under ≈100m of rock

Reactor Neutrino Oscillations

Disappearance of Electron Antineutrinos

Write mixing of v_e and v_x in terms of energy eigenstates:

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle - \sin\theta |\nu_2\rangle$$
$$|\nu_x\rangle = \sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

Very small neutrino masses:

$$E_{1,2} = \left[p^2 + m_{1,2}^2\right]^{1/2} \approx p + \frac{m_{1,2}^2}{2E}$$

Use basic Quantum Mechanics to propagate neutrinos over a distance L, and calculate the probability:

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta \sin^2 \left[1.27 \Delta m^2 (eV^2) \frac{L}{E} \left(\frac{m}{MeV} \right) \right]$$
$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Examples: θ_{12} and θ_{13}

PROSPECT @ Manchester

Status: The Good News

- Mixing angles θ_{12} , θ_{13} , and θ_{23} are all known Reactor and beam experiments all contribute
- Mass² differences are well measured Everything appears to be consistent
- CP Phase δ "looks like" it is nonzero Will be pinned by T2K, NOvA, and DUNE
- Mass hierarchy "looks like" it is normal Will be pinned by JUNO, NOvA, and DUNE

Status: Anomalies

These show up mainly in reactor experiments

- The flux is 6% smaller than calculations aka The "Reactor Neutrino Anomaly", where the most recent calculations disagree with experiment *Interpret in terms of "Sterile Neutrinos"?*
- The "bump" at 5 MeV in reactor spectra Unexpected feature that shows up in all of the high statistics reactor neutrino experiments (Double Chooz, RENO, and Daya Bay)
 A clue to the Reactor Neutrino Anomaly?

Reactor Neutrino Anomaly

Sterile Neutrino Interpretation

PROSPECT @ Manchester

The 5 MeV "Bump"

Something is odd near 5 MeV of prompt energy

PROSPECT @ Manchester

Caveat: Fuel Evolution

Daya Bay, Phys.Rev.Lett. 118 (2017) 251801

Brand New: arXiv:1806.00574

PROSPECT

The PROSPECT Physics Program, J. Ashenfelter, et al., J.Phys. G43 (2016) See also detailed paper on 50 liter prototype detector, arXiv:1805.09245

- Two primary goals:
 - 1. A search for sterile neutrinos with $\Delta m^2 \approx 1 eV^2$ through the disappearance of reactor electron antineutrinos
 - 2. Precision measurement of the prompt <u>energy spectrum</u> of neutrinos from a highly enriched ²³⁵U reactor core
- Essential features:
 - Highly segmented detector to measure <u>spectrum</u> dependence on baseline and to combat backgrounds
 - Uses ⁶Li for localized neutron capture signal
 - Neutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory

PROSPECT: $\overline{\mathbf{v}}_e$ **Detection**

- Prompt energy gives neutrino energy, and includes annihilation gamma rays.
- Neutron capture on ⁶Li localizes signal.
- Light from delayed signal is quenched, but pulse shape discrimination works.
- Some contributions from np capture.

Experiment Layout

PROSPECT @ Manchester

HFIR Reactor Core

PROSPECT @ Manchester

Detector Cross Section

Total of 11×14=154 detector modules

- Water Bricks
- Active volume
- PMTs
- Acrylic tank
- Water
- Al tank
- 📕 Lead
- Poly
- Borated poly
- Chassis

Reactor Shielding

PROSPECT @ Manchester

Single Detector Module

PROSPECT @ Manchester

Calibration Systems

- Optical fibers driven by a 450 nm pulsed laser for timing, single PE's
- Radioactive sources

 (²²Na, ⁶⁰Co, ¹³⁷Cs for
 β[±],γ; ²⁵²Cf for neutrons)
 insertable/removable on
 belts inside tubes
- Inherent radioactivity from ambient radon and ²²⁷Ac scintillator "spike"

Data Acquisition

Data Rates and Volume

Quantity/Run Condition	Reactor On	Re	Reactor Off		Calibration
Acquisition Event Rate (kHz)	28	4			35
Segment Event Rate (kHz)	115	35			190
Avg. Segment Multiplicity	4.0	7.0			5.5
Max Opt. Link Rate (MB/s)	3.0	1.0			7.2
Min Opt. Link Rate (MB/s)	1.1	0.6			2.2
Data Volume per Day (GB)	671	312			476
Processing Step/Run Condition		F	RxOn	RxOff	Calibration
Raw File Size (GB/run)		2	9	13	22
Unpacked File Size (GB/run)		3	0	13	23
Raw \rightarrow Unpack processing time (CPU-min/file)		9	8	44	77
DetPulse File Size (GB/run)		8	.2	3.7	4.9
Unpack \rightarrow DetPulse processing time (CPU-min/file)			8	26	37
PhysPulse File Size (GB/run)			.2	1.4	2.4

DetPulse \rightarrow PhysPulse processing time (CPU-min/file) | 14

PROSPECT @ Manchester

6.2

8.7

Possible Baselines

The detector is on a movable platform

Current position

Movement must respect existing walls and allow for standard walkway access, maintaining detector orientation, but can allow the electronics racks to be relocated.

Performance & Analysis

All Results Preliminary

Pulse Shape Discrimination

Calibrations

Volume × Efficiency

²²⁷Ac: Two α's, same PSD, but different energy

Measured with ²²⁷Ac Spike: Double α-decay with 0.5 Bq dissolved AcCI in scintillator

Signal and Background

Identify α+t, then... <u>Corr</u>: Look for IBD μs before <u>Acc</u>: Look for IBD ms after

Now subtract accidental from correlated, and examine the prompt energy spectrum...

24 Hours of Neutrinos

IBD Events vs Baseline

Spectrum Ratio vs Baseline

G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D83 (2011) 073006

PROSPECT @ Manchester

Oscillation Search

Conclusion & Outlook

- Data taking started in March 2018, covering one partial and one full cycle of "Reactor On", plus "Reactor Off"
- Total of 30 days of "Reactor On" time > 22K events
- We have obtained our first results from a Sterile Neutrino oscillation search. The RAA solution is disfavored.
 Preprint submitted: <u>http://arxiv.org/abs/1806.02784</u>
- Based on performance so far, we expect significantly higher statistical sample of events by end of 2018
- Work continuing on energy calibration, looking forward to precision spectrum results on ²³⁵U neutrinos

The PROSPECT Collaboration

Ten Universities, Four National Laboratories, ≈70 Collaborators

