NEUTRINO OSCILLATIONS AND WHAT THEY HAVE TO OFFER IN THE NEAR FUTURE

CP violation and Mass Hierarchy reach, sooner and later

Jenny Thomas, UCL, Birmingham Oct 5th.

PLAN FOR THE DISCOVERY OF THE MASS HIERARCHY AND CP VIOLATION IN THE NEUTRINO SECTOR

- The Present Knowledge
 - Post Neutrino 2016
- The Near Future
 - T2K, NO**v**A
- CHIPS : R&D for the future
- The Further Future
 - JUNO
- The Far Future
 - PINGU, DUNE

Shamelessly showing slides from neutrino 2016: P.Vahle(NOvA), A.Marrone(global fits), G.Ranucci(JUNO), J.Koskinen(PINGU) and ICHEP 2016:K.Iwamoto(T2K) also D.Cowen(PINGU), V.Paolone(DUNE), A.Cabrera (Double Chooz)

REMINDER OF THE QUESTIONS

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Normal hierarchy

- Three light neutrinos
 - Mass eigenstates mix to form weak eigenstates
- Mixing probability modified by mass squared differences
- $\circ~\delta_{\text{CP}}$ and the mass ordering are still unknown but within reach
- s₂₃ now limiting next steps

REMINDER OF THE ANSWERS SO FAR....

Precision era in neutrino oscillation phenomenology

Standard 3v mass-mixing framework parameters

Known		Unknown	
(pre-v2	016)		
δm^2	2.4%	CP-violating phase δ	
Δm^2	1.8%	Octant of θ_{23}	
$\sin^2 heta_{12}$	5.8%	Mass Ordering -> $\mathrm{sign}(\Delta m^2$	
$\sin^2 heta_{13}$	4.7%	[Dirac/Majorana neutrinos, Majorana phases absolute	
$\sin^2 heta_{23}$	$\sim 9\%$	mass scale]	

In this talk $\Delta m^2 = (\Delta m^2_{13} + \Delta m^2_{23})/2$ Mass Ordering = sign of Δm^2

REMINDER OF THE APPROACH

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

 ${\rm \circ}$ Looking at disappearance of ν_{μ} (or $\nu_{\rm e}$ appearance)

$$1 - P(\nu_{\mu} \to \nu_{\mu}) = (C_{13}^4 \sin^2 2\theta_{23} + S_{23}^2 \sin^2 2\theta_{13}) \sin^2 \Phi_{32}$$

- First term depends on $sin^2 2\theta_{23}$
- Second term depends on θ_{13} but also $\sin^2\theta_{23}$
- \circ This means there is information in here about the octant of $\theta_{\rm 23}$ but its weak

REMINDER OF THE APPROACH

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

 \circ Searching for electron neutrino appearance tells us about $\text{sin}^2\theta_{13}$, mass hierarchy and δ_{CP}

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \underbrace{\frac{2a}{\Delta m_{31}^{2}}}{1 - 2S_{13}^{2}})) \\ & + 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ & - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ & + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ & - 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{*}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

• Running with anti-neutrinos changes sign of CPV term

REMINDER OF THE APPROACH

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

• Leading term relies also on $\sin^2\theta_{23}$, and **a**, related to density of electrons in the earth, leading to dependence on sign of Δm^2_{31}

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \underbrace{\frac{2a}{\Delta m_{31}^{2}}}{1 - 2S_{13}^{2}})) \\ & +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ & -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ & +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ & -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

 Combining appearance and disappearance measurements tells us about the octant

AT NEUTRINO 2016, LONDON NOVA

New kid on the block, first appearance at a Neutrino conference with data!

• NOvA event displays show very fine detail in this liquid scintillator detector

• Muon energy by range, EM resolution

AT NEUTRINO 2016, LONDON NOVA

78 events observed in FD
 473±30 with no oscillation
 82 at best oscillation fit
 3.7 beam BG + 2.9 cosmic

 χ^2 /NDF=41.6/17 Driven by fluctuations in tail, no pull in oscillation fit

AT NEUTRINO 2016, LONDON NOVA

• Only looking at disappearance of ν_{μ} its not maximal at 2.5 σ ! octant is degenerate...more about that later

Best Fit (in NH): $\left|\Delta m^2_{32}
ight| = 2.67 \pm 0.12 imes 10^{-3} {
m eV^2}$

 $\frac{|\Delta m_{32}| - 2.07 \pm 0.12 \times 10^{\circ} \text{ eV}}{\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})}$ Maximal mixing excluded at 2.55

At neutrino 2016, london nova

- □ Fit for hierarchy, $\delta_{\rm CP}$, $\sin^2\theta_{23}$
 - Constrain Δm² and sin²θ₂₃ with NOvA disappearance results
 - Not a full joint fit, systematics and other oscillation parameters not correlated
- Global best fit Normal Hierarchy
 - $\delta_{CP} = 1.49\pi$ $\sin^2(\theta_{23}) = 0.40$
 - **best fit IH-NH**, $\Delta \chi^2 = 0.47$
 - both octants and hierarchies allowed at 1σ
 - 3σ exclusion in IH, lower octant around $\delta_{\rm CP} = \pi/2$

Antineutrino data will help resolve degeneracies, particularly for non-maximal mixing Planned for Spring 2017

AT NEUTRINO 2016, LONDON MINOS/MINOS+

Combination of disappearance and appearance, slightly disfavours higher octant

WHICH OCTANT? THE NEW PARAMETER OF INTEREST!

• Up until now, all data consistent with maximal mixing

- Octant doesn't matter!
- Remember what we measure is $\sin^2 2\theta_{23}$ to first order
- NOvA (and MINOS/MINOS+) shows non-maximal mixing evidence
- MINOS/MINOS+ has a very slight preference for lower octant
- So what does T2K say?

AT NEUTRINO 2016, LONDON T2K

• Mixing is maximal at T2K

AT ICHEP 2016, CHICAGO

• T2K combination with anti-neutrinos, the tension mounts!

AT NEUTRINO 2016, LONDON REACTOR VALUES

- Double Chooz : $sin^2 2\theta_{13} = 0.111 \pm 0.018$
- Daya Bay : $sin^2 2\theta_{13} = 0.0841 \pm 0.0027 \pm 0.0019$
- Reno : sin²2θ₁₃=0.082±0.009±0.006

 θ_{13} is the key to the Jaguar!!

DC-IV PRELIMINARY results @CERN (Sept.2016)

 $sin^{2}(2\theta_{13})^{R+S} = (0.119\pm0.016)$ (marginalised over $\Delta m^{2} = (2.44\pm0.09)eV^{2}$)

reactor- θ_{13} key for CP-violation & mass hierarchy \rightarrow redundancy fundamental (DC pushing to resolve: improvements coming soon)

Anatael Cabrera (CNRS-IN2P3 & APC)

MAXIMAL OR NON-MAXIMAL: A VERY BIG QUESTION : BACK TO T2K

 $\delta_{cp} = [-3.13, -0.39](NH), [-2.09, -0.74] (IH) at 90\% CL$

$\begin{array}{l} Maximal \mbox{ or non-maximal: a very big} \\ QUESTION: BACK TO \mbox{ T2K} \end{array}$

- T2K uncertainty on s²₂₃ is **very small** because its maximal
- $\circ\,$ This leads to significant reduction in δ_{cp} parameter space
- All other parameters are now marginalized over : progress

 $\delta_{cp} = [-3.13, -0.39](NH), [-2.09, -0.74] (IH) at 90\% CL$

PRELIMINARY JOINT FIT IN REAL TIME! (A.MARRONNE ET AL.)

• Do we already know that $\delta_{_{CD}}$ is not zero?

PROGNOSIS FOR MASS HIERARCHY AND CPV Olltimate precisions depend on run strategy JPARC upgrade in 2018 is significant (run until 2025)

- NH, δ_{cp} >1 is so far (slightly) preferred
- \circ MH will likely be determined to 3σ by 2022 by NOvA even if $\theta_{\rm 23}$ not maximal
- Old sensitivities already somewhat overtaken by events

CHIPS-M Summer 2014/2015, 50ton prototype

CHIPS

- 5-10kt WC detector will be deployed in NuMI beam (in N.Minnesota mine pit) in summer 2018
- Funded by ERC grant to UCL and Nikhef, Leverhulme grant to UCL, and large contribution from U.Wisconsin, Madison and U.Minn, French contribution of PMTs 0
- 7mrad off axis, will contribute to combined knowledge before 2022
- Innovative design allows detector to grow as more instrumentation becomes available
- Could point the way to affordable Mton in the future 0

CP violation significance (Normal hierarchy)

OVERVIEW

• First prototype CHIPS-M (Summer 2014, 2015)

- Working on water 101
- Tested liner, other materials, pump, water filtration, winter
- Prototype PMT modules, KM3net electronics, integration of KM3net and IceCube electronics
- CHIPS-10 (Summer 2018)
 - 10kt vessel footprint
 - Instrumentation mass depends on PMT availability and \$\$
 - Demonstration of working detector, under water, identification of signal events and demonstration of costs
- Data taking until 2022

CHIPS-M BEING DESIGNED

ITEM NO.	DESCRIPTION	Material	Vendor	QTY.
1	End Truss Assembly			2
2	Column	304 SS Double Strut Channel (Back-to-Back), 120in stock (cut to length)		8
3	Wall Liner	Seaman XR-5 PW		1
4	End Liner	Seaman XR-5 PW		2
5	Lateral Bracing Wire Rope Assembly	304 SS, 1x19 const, 3/16in dia, ~132in length	McMaster p/n 3461T18 plus end hardware and turnbuckles	8
6	Strut Channel T-Plate	304 SS		8

3317mm 131in OVERALL

CHIPS-M BEING CONSTRUCTED

- Parts built at W&M, constructed in Soudan surface building
- Dedicated team of youngsters : 1 postdoc, 3 grad students, 5 undergrads

CHIPS-M BEING PVC LINER: BLACK ON INSIDE

ICECUBE DOMS AND CAMERA INSIDE

WHERE TO PUT THE DETECTOR?

UMBILICAL: CARRIED WATER AND SIGNALS

- 200m umbilical contains 400m of water pipe, 5+3 cat5 cables for IceCube DOM readout and power, power to central power box
- Fibre deployed for read out, all buried for winter

CHIPS-M DEPLOYMENT AND RECOVERY

Being submerged
 in 2014 ← ← ← ←

 After one year under the water
 →→→

- Liner is robust, light-tight and mostly pristine after a year under the water
- Sealing method is robust
- Survived the winter

WATER CLARITY

• CHIPS has advantage of being under about 6 bar pressure and at 4-8°C :

- Good for crushing bubbles and bacterial blooms respectively
- Filters provide
 - a raking of the particulates in the water down to 0.2 micron
 - A UV sterilizer to eliminate life + a carbon filter to make sure

• We have small model of CHIPS-M (micro-CHIPS) on surface

- Using 405nm laser and 3m upright column, we watched the water clarity over 6 months
- This is likely worse than in reality because it is not pressurized or cold
- Needed to know how clear we can make the water with simple filtering, for simulation benchmarking, and for system design

THE WATER SYSTEM

• UV Sterilizer + series of filters down to 0.2microns

- Circulates at 3-5 gpm
- Pit was a taconite mine. Lots of red stuff in it

WATER STUDIES

- Automated attenuation length measurements using BeagleBoneBlack, servos, relays
- PIN diode at top and 405nm laser at base provide the baseline : simple op-amp circuit to get correct voltage for the BBB
- 50 gallons of RO'd water circulated at equivalent of 4gpm in CHIPS-M
- UV sterilizer, 0.5μ m + carbon, 0.2μ m filters
- Full recycle time of about 10 days
- System is the equivalent of what was in CHIPS-M : straightforward and cheap but without the low temperature which keeps bacteria better under control at the bottom of the lake and pressure which reduces bubbles

Water Attenuation Time Evolution

WATER : CONCLUSIONS

- Simple filtering can clean the water to ~100m at 405nm
- Means dissolved
 solids do not cause
 bad attenuation at
 this wavelength
- Check with other wavelength light
- Implication is for cost of water plant and strength of structure

DETECTOR PLANES

Nihkef

Madison

• Two prototypes were tested, one from Nikhef with KM3Net readout, one from UW Madison with ParisROC readout.

NIKHEF DETECTOR PLANE DATA

- Event window is 30ns with at least 5 hits
- Use events to compare with CRY simulation
- Verify cosmic rate prediction from MC at OUR 50m depth

$10\mu s$ NuMI spill for a 10kt CHIPS = 0.14 (14.4kHz in CHIPS-10)

Raw rates comparison

Corrected cosmic muon rates in CHIPS-M

Less than 1% dead-time in 10kt detector!!!

$CHIPS-M:\ensuremath{\mathsf{WHAT}}\ensuremath{\mathsf{WE}}\xspace$ learned

- Liner is robust and totally light tight
- Water can reach ~100m attenuation length (at 405nm) after 3 months of circulating with simple filters
- Detector planes withstand pressure
- Readout to surface achievable with fibre cable
- Water circulation carries on throughout winter with the winter defence system
- Measurement of cosmic rate shows 10kt detector possible with 14.4kHz rate and 0.14 cosmic events per spill in entire detector
- Cable grips can work, but need better quality control tool while installing
 - We used compressed air to look for leaks, but this was not sufficient
 - Maybe potting will be a better solution

CHIPS-10KT

The near future

RECENT INNOVATION: IPHONE AND ARM

- We are riding a revolutionary wave in development
- \$20 for a BBB to collect signals and transmit to Ethernet
- Reduce cost to minimum

- Side comment: Industrially available ASICs in version 100 (ish): home grown electronics is typically in version 2-5the combination of cheap processors such as Raspberry Pi, BeagleBone and Arduino combined with the WWW means progress goes incredibly fast as solutions are known instantaneously
- Developers are like the Borg: and resistance is futile..

DAQ DEVELOPMENT : IPHONE AND ARM MADISON

- Working in conjunction with IceCUBE IceTop and HAWC @ Madison
- Micro processor on PMT
- TOT to ~waveform from series of delays
- 1ns absolute timing
- WR provides clock
- BBB builds events
- Ethernet back to WR switch and the world
- +ve CW base being fabricated for all donated PMTs

SIMULATION

• Based on WCSim developed for LBNE WC option

- Run-time description of geometry and PMTs using xml files make changes without recompiling
- New PMT simulation with full dynode chain
- New features allow pattern of different PMTs throughout the detector
 - First time this has actually been properly simulated
 - Optimal layout of PMTs will be understood before PA modules go into production: this will be by early 2017
- Reconstruction based on MiniBOONE algorithms has been developed and is being tested
 - Includes charge and time likelihood pieces used with equal weight
 - Good time resolution and long travel distances give timing more power

Hit Map 2000 ν_{μ} NC Events

Hit Map 2000 v_e CC Events

PMT LAYOUT

- New feature to lay out PMTs in more complex patterns
- Potential to model the effects of different-sized PMTs side-by-side
- Model the efficiency of nonuniform coverage

Reconstruction Bottom Line

Table 1. The resolutions of various reconstructed parameters from single ring electron (muon) track fits to a sample of CCQE ν_e (ν_μ) interactions with energies following those expected from the NuMI beam.

Sample	Geometry	Reconstruction Resolution				
		Position (cm)	Time (ns)	Direction (°)	Energy (MeV)	
CCQE ν_e	10 inch, 10%	35	0.9	2.1	208	
	3 inch, 10%	35	0.84	1.9	210	
	3 inch, 6%	38	0.89	2.1	211	
CCQE ν_{μ}	10 inch, 10%	47	1.35	2.6	113	
	3 inch, 10%	44	1.14	2.7	110	
	3 inch, 6%	51	1.28	3.0	113	

Reconstruction Bottom Line

Table 1. The resolutions of various reconstructed parameters from single ring electron (muon) track fits to a sample of CCQE ν_e (ν_μ) interactions with energies following those expected from the NuMI beam.

Sample	Geometry	Reconstruction Resolution				
		Position (cm)	Time (ns)	Direction (°)	Energy (MeV)	
CCQE ν_e	10 inch, 10%	35	0.9	2.1	208	
	3 inch, 10%	35	0.84	1.9	210	
	3 inch, 6%	38	0.89	2.1	211	
CCQE ν_{μ}	10 inch, 10%	47	1.35	2.6	113	
	3 inch, 10%	44	1.14	2.7	110	
	3 inch, 6%	51	1.28	3.0	113	

HOPES AND DESIRES

- by 2019 we could possibly have 10kt instrumented in the water
 - Depends on available cash/PMTs
- We have proved the background rejection for 6% coverage at a level of that used in original simulations (10" PMT with 10% coverage with old SuperK efficiencies)
- A lot more work can be envisaged reagarding the reconstruction algorithms
- Also, google NN has been shown to work very well at NOVA
- We should to be able to measure θ_{13} with water in NuMI

MECHANICAL DESIGN

• Work on-going on the mechanical design

- Separate planes of PMTs easily attached
- Structure will be built on and into the water
 - Model is to use undergraduate labor a la $\text{NO}\nu\text{A}$ for both module construction and integration
- Neutral buoyancy will be designed in to our advantage
- Largest possible structure should be considered
 - CHIPS-10 would have a 20-30m diameter footprint depending on cost

MECHANICAL STRUCTURE

Cylinder Parameters versus Total Cost (M\$)

- New idea is to hang bottom spaceframe end cap from top one with Dyneema ropes (used in Km3Net)
- Allows volume to grow if more PMTs are available
- Saves 50% cost of the spaceframe sides
- PMT planes attached to ropes
- Make footprint large enough: bang for buck is impressive for walls

- Domed roof self-supporting in air
- Supported by circumferential columns
- Columns supported by floating ring truss equipped with ballast tanks
- Entire assembly built next to shore with crane support
- Floating ring truss provides work surface
- Temporary curtain around circumference to keep inside of detector clean
- Dome's roof could be equipped with a radial crane

12.11.14 T. Benson

Assembly sequence on water

1. Build floor and first wall layer. The wall layer also attaches to the floating ring jacks

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.
- 4. As layers are added the floor and wall assembly successively climbs down.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.
- 4. As layers are added the floor and wall assembly successively climbs down.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.
- 4. As layers are added the floor and wall assembly successively climbs down.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.
- 4. As layers are added the floor and wall assembly successively climbs down.

- 1. Build floor and first wall layer. The wall layer also attaches to the floating ring.
- 2. First wall layer "climbs" down the floating ring into the water as it is filled.
- 3. Build second wall layer.
- 4. As layers are added the floor and wall assembly successively climbs down.
- 5. After all wall layers are assembled, ballasts are adjusted and the ring and top climb down the wall. A searchise made at the perimeter seam.

(Lowering)

Additional comments

- The ring truss may also be used for rigging and mooring.
- A top dome that emerges above the water line will require a spaceframe or geodesic dome structure despite wall design choice due to large self-supporting span.

12.11.14 T. Benson

The further future, JUNO, starting 2022

JUNO physics summary

Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

Neutrino 2016 - July 6, 2016

Gioacchino Ranucci - INFN Sez. di Milano

20 kton LS detector ~3 % energy resolution-the

- greatest challenge Rich physics possibilities
- ⇒ Mass hierarchy
- ⇒ Precision measurement of 3 mixing parameters
- ⇒ Supernovae neutrino
- ➡ Geoneutrino
- ⇒ Sterile neutrino
- → Atmospheric neutrinos
- → Nucleon Decay
- ⇒ Exotic searches

THE FURTHER FUTURE, JUNO, 2022

Could be fast: depends on error on $\Delta m_{\mu\mu}!$

PINGU

- Independent measurement 5 years from start date, 2022-2027?
- 3σ in 4 years, or 3 years with external prior

- Combination of signal in track and cascade channel
- Sensitivity from pseudo-data set based log-likelihood ratio (LLR) and Asimov analysis methods are in good agreement

DUNE Physics: Official timeline : 2032 for this sensitivity CP Violation Sensitivity

Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5+3.5 yrs x 40kt @ 1.07 MW)

(Bands represent range of beam configurations)

CP Violation Sensitivity

DUNE Physics: MH Sensitivity

Discrimination (between NH and IH) parameter as a function of the unknown δ_{CP} for an exposure of 300 kt·MW·year (40 kt·1.07 MW·7 years).

 \rightarrow The minimum significance (the lowest point on the curve on the left) where the mass hierarchy can be determined any value of δ_{CP} as a function of years of running

Official timeline : 2032 for this sensitivity

SUMMARY AND PERSONAL CONCLUSION

- The neutrino oscillation parameter list is being ticked off very fast!
- Each new neutrino conference shows significant progress
- \circ It looks like things could be wrapped up very soon wrt $\delta_{ ext{cp}}$
- Personal feeling is that by 2022 we should know the MH, and we should know that $\delta_{\rm CP} \neq$ 0 at (at least) 3σ
 - Impact of JPARC upgrade should not be underestimated
- ${\rm o}$ Juno should confirm MH at 3-4 σ by 2027, combination with NOvA and T2K could be 5 σ
 - Also, great cross check of solar parameters in a completely different environment
- DUNE will confirm this all at 5σ by 2032
 - VERY exquisitely reconstructed events !

Where I hope to be in 2032

