Exotics Searches with CMS

Jim Brooke Birmingham, 21st May 2014

CMS Physics Program 2011

A constraint of the second statements of the second statement of the second st

Searches Higgs SUSY Exotics

CMS Physics Program 2012

CMS Physics Program post-2012

OCD Electroweak Heavy flavour Heavy lons Higgs

Searches for everything other than Higgs & SUSY

OCD Electroweak Heavy flavour Heavy lons Higgs Searches Higgs SUSY Exotics

Searches for everything other than Higgs & SUSY

Leave no stone unturned

Quirks

Glueballs

Hidden Valleys

Large Extra Dimensions

R-hadrons

Unparticles

Colorons

Leave no stone unturned

Dark matter

Leptoquarks

Dark photons

Microscopic black holes

Stringballs

Monopoles

Compositeness

Search for broad excess or resonance

- Familiar final states : e⁺e⁻, μ⁺μ⁻, bb, dijet, e+MET, μ+MET, top-like ...
- Unexpected : e+jet, µ+jet, e+µ, high multiplicities, ...
- Measure properties of particles directly
 - anomolous dE/dx, timing, weird tracks, displaced vertices, etc.
 - (Obviously they need to be at least meta-stable for this...)
- Exotic decay modes of known particles

CMS Exotica Physics Group Summary – March, 2014

CMS Exotica Physics Group Summary – March, 2014

What we (don't) know

Large Hadron Collider

Compact Muon Solenoid

<u>CMS-PAS-EXO-12-060</u> CMS-PAS-EXO-12-061

Di-lepton

Lepton + E_T^{miss}

 $M_{\mu\mu} = 1.824 \text{ TeV}$

Jim Brooke (Univ. of Bristol)

CMS-PAS-EXO-12-061

- Perform "bump hunts" in
 - Dilepton invariant mass spectrum
 - ► Lepton+ E^{Tmiss} m^T distribution
- Background shapes taken from MC and normalised to control regions in data

CMS-PAS-EXO-12-060

CMS-PAS-EXO-12-061

- Set limits on a variety of BSM physics
 - ► Z'_{SSM} , Z'_{Ψ} , W'_{SSM} , W_{KK}
- Alternative interpretation of lepton + $E_T^{miss} \rightarrow W + E_T^{miss}$

Dark Matter Signatures

Lepton+MET final state is a signature of W+invisible, eg. $W\chi^0\chi^0$

DM production characterised using effective field theory with vector or axial-vector couplings

 For W+MET search :
 DM couplings to u and d may be different.
 Interference characterised through parameter ξ

CMS-PAS-EXO-13-004

For $M\chi > 100$ GeV, AV has lower cross-section than V m_T distribution falls more steeply for $\xi = +1$

Monolepton

CMS-PAS-EXO-13-004

Set limits on σ .BF as function of DM mass, for V and AV, $\xi = -1, 0, +1$

CMS-PAS-EXO-12-048

Monojet

CMS-PAS-EXO-12-048

jet₁ p_T > 110 GeV, η < 2.4 N_{jet} (30 GeV) < 3 $\Delta \phi$ (j1,j2) < 2.5 lepton veto : e, μ (10 GeV), τ (20 GeV)

Monojet

CMS-PAS-EXO-12-048

Perform a counting experiment for several E_T^{miss} thresholds

28

arXiv:1402.6703 [astro-ph.HE]

All these searches probe the same interaction...

Use the effective field theory to convert limits on $\sigma(pp \rightarrow \chi^0 \chi^0)$ to limits on $\sigma(\chi^0$ -nucleon) and compare with direct detection expts (scattering)

DM-nucleon Limits

<u>CMS-PAS-EXO-13-004</u> <u>CMS-PAS-EXO-12-048</u>

Convert limits on σ .BF to limits in Λ -M $_{\chi}$ plane

DM-nucleon Limits

CMS-PAS-EXO-13-004 CMS-PAS-EXO-12-048

Also have results for : monolepton AV, monojet (V, S), monophoton (V, AV), monotop (V, S), tt+MET

- Several papers discuss validity of the effective field theory
 - ▶ eg Buchmuller, Dolan, McCabe : arXiv:1308.6799
 - EFT is only valid for high mediator mass
 - ▶ (Also, valid region has $\Gamma_{med}/m_{med} > 1$!)
- Collider limits on $\sigma(\chi^0$ -nucleon)
 - Need to be taken with a pinch of salt !
- Proposal from paper above
 - Present limits using simplified models
 - \blacktriangleright Parameters : $m_{med},\,m_X$, $g_q,\,g_X,\,\Gamma_{med}$

Long Lived Particles

Long lifetimes are common in the SM

Constrained interactions + potential barrier

We should expect them in BSM scenarios !
Split SUSY, GMSB, RPV,

Displaced Dileptons

CMS

Displaced Dileptons CMS-PAS-EXO-12-037 University of BRISTOL

Simulated $H^0 \rightarrow X^0 X^0 \rightarrow \mu^+ \mu^- e^+ e^-$

Characterise X⁰ decay with track impact parameters (d_0 , z_0) and decay length (L_{XY})

Require good tracking efficiency for high impact parameter tracks

Tracking efficiency measured from cosmics

Jim Brooke (Univ. of Bristol)

- Azimuthal separation between dilepton momentum vector and displaced vertex vector
- Signal at small values define control region with $\Delta \phi > \pi/2$
- Background populates signal and control regions equally

• Data and MC in control region : $\Delta \phi > \pi/2$

Tail cumulative distributions in control and pseudo-signal regions (ie. minimum transverse impact parameter significance $|d_0/\sigma_d| < 6$)

Jim Brooke (Univ. of Bristol)

University Of

Transverse impact parameter distributions in the signal region ($\Delta \phi < \pi/2$)

Limits on exotic decays of H₁₂₅ !

Displaced Dijets

Displaced Dijets

CMS-PAS-EXO-12-038

- Select events with two jets with good tracks and a common secondary vertex
 - ▶ Jet pT(1,2) > 60 GeV, η < 2
 - Vertex $\chi_2/dof < 5$
- Remainder of selection based on 3 orthogonal criteria
 - I. Jet 1 : N prompt tracks, "prompt energy fraction"
 - 2. Jet 2 : N prompt tracks, "prompt energy fraction"
 - 3. Vertex/cluster likelihood discriminant (based on four variables)
- Background estimation then based on an extended ABCD using these 3 criteria

Displaced Jets

CMS-PAS-EXO-12-038

Simulated H⁰→X⁰X⁰→qqqq

CMS-PAS-EXO-12-038

Background estimates :

$\mathbf{L_{xy}}$	$< 20 { m cm}({ m low})$	$> 20 \mathrm{cm}(\mathrm{high})$
prompt tracks	≤ 1	≤ 1
prompt energy fraction	< 0.15	< 0.09
vertex/cluster disc.	> 0.9	> 0.8
expected background	$1.60 \pm 0.26(stat.) \pm 0.51(syst.)$	$1.14 \pm 0.15(stat.) \pm 0.52(syst.)$
observed	2	1

Table 1: Predicted background and the number of observed candidates for optimised selections.

Cross-check in control region with inverted missing hits requirement :

Vertex/Cluster Discriminant

Displaced Jets

CMS-PAS-EXO-12-038

Displaced Jets

<u>CMS-PAS-EXO-12-038</u>

Stable Massive Particles

- Identify a (meta)-stable charged particle as it traverse the detector
- Examples
 - R-hadrons
 - Long lived stau
 - Vector-like confining gauge theories
- SMP signature
 - High momentum
 - Highly ionising
 - Long time-of-flight
- Special case of strongly interacting R-hadrons
 - Nuclear interactions with material may change flavour
 - Neutral <=> Charged
 - Multiple analyses :
 - "Tracker-only", "TOF-only", "Tracker+TOF"

SMP

<u>JHEP 07 (2013) 122</u>

Plots from Phys. Lett. B 713 (2012) 408

- Mass reconstruction
 - Approximate Bethe-Bloch formula before minimum
 - Extract parameters by fitting to the proton line
- Search for tracks with high mass

Plots from CMS-PAS-EXO-10-004

- Standard interpretation in terms of gluino, stop, stau (GMSB)
 - Inc. "charge suppressed" model of R-hadron nuclear interactions (any interaction results in a neutral R-hadron)
 - Different fractions of gluino/gluon initial states

Paper includes combined 7 TeV (5 fb⁻¹) + 8 TeV (19 fb⁻¹) result

10⁻³

10⁻⁴

400

 \blacktriangleright Neutral under SU(3) and SU(2) $_{L}$, only couple to Z and photon

Mass (GeV/ c^2)

600

Paper includes combined 7 TeV (5 fb⁻¹) + 8 TeV (19 fb⁻¹) result

200

400

600

800

Mass (GeV/c²)

1000

Jim Brooke (Univ. of Bristol)

200

10⁻³

10⁻⁴

SMPs in pMSSM

- The analysis is sensitive to large fraction of SUSY parameter space
- Acceptances for results on previous slides are estimated using full GEANT simulation
 - Detector effects are important and complex (eg. amount of material traversed)
 - This is impractical for parameter space scans
- Instead parameterise acceptance as function of individual particle properties
 - This is valid for lepton-like particles
 - Use large full simulation samples to parameterise acceptance of Tracker+TOF analysis in bins of p_T , β , η
 - Use this to re-cast Tracker+TOF result for any given model

CMS Preliminary - $\sqrt{s} = 8 \text{ TeV} - L = 18.8 \text{ fb}^{-1}$

CMS Preliminary - $\sqrt{s} = 8 \text{ TeV} - L = 18.8 \text{ fb}^{-1}$

SMPs in pMSSM

CMS-PAS-EXO-13-006

Chargino mass/lifetime exclusion map pMSSM = 19 parameter SUSY model

Other Long Lived Searches

Stopped SMPs

JHEP 8 (2012) 26

Highly ionising particles may stop in the detector

Search during periods of no collisions

Trigger includes a "no collision" condition using BPTX monitors

arXiv:1207.0627

Neutralino Mass [GeV]

Exotic Higgs Decays

- We know there must be BSM physics
- We know Higgs bosons couple to mass
- H₁₂₅ is one of the least well measured SM particles...

We should be looking for exotic decay modes !

See arXiv:1312.4992 for comprehensive survey

Exotic Higgs Decays

- SM modes
 - $H_{125} \rightarrow \mu\mu$, $H_{125} \rightarrow ee$
- ▶ h125 → γ+MET
- $\bullet H \rightarrow invisible$
 - ► VBF, Z(II)H, Z(bb)H, monojet, ttH
- Charged H
 - $H^{+/-} \rightarrow cs, cb, tb, \tau v$
- $H_{125} \rightarrow XX \rightarrow \gamma \gamma \gamma \gamma \gamma$
- LFV in $H \rightarrow \mu \tau$

- ► 2HDM
 - $H \rightarrow h_{125}h_{125}, A \rightarrow Zh_{125} \rightarrow multi$ $leptons, \gamma$
 - ► A → Zh(125) → IIbb
 - heavy $H \rightarrow ZA \rightarrow IIbb$
 - heavy $H \rightarrow ZA \rightarrow II\tau\tau$
- NMSSM
 - ► H_2 (125) → H_2H_1 → 4τ
 - H \rightarrow a1a1 \rightarrow 4 μ
 - ► $H_3 \rightarrow H_2(125)H_1(60-125) \rightarrow bbbb$
 - $H_2(125) \rightarrow a_1a_1 \rightarrow \gamma \gamma \gamma \gamma \gamma$
 - H1 → YY
 - ► $H_2(125) \rightarrow H_1H_1 \rightarrow 4\tau$, $2\tau 2b$, $2\mu 2b$, 4b
- MSSM
 H → hh → γγbb

arXiv:1404.1344

Invisible decay modes are well motivated by the existence of dark matter !

Already have indirect limits from fits to visible decay modes

We search in ZH and vector boson fusion production modes

• With $Z \rightarrow II$ and $Z \rightarrow bb$ final states

University of BRISTOL

VBF jet topology $p_T > 50$ GeV, fwd-bkwd, $\Delta \eta_{jj} > 4.2$, $M_{jj} > 1100$ GeV, $\Delta \varphi_{jj} < 1.0$, 30 GeV CJV $E_T^{miss} > 130$ GeV

V+jets backgrounds -> control regions with visible leptons QCD multijet -> ABCD method Remainder -> MC

arXiv:1404.1344

Limits on $\sigma \times BF$ and $\sigma \times BF/\sigma_{SM}$

BF(H₁₂₅→inv) < 0.65 obs (0.49 exp)

arXiv:1404.1344

Combination of Z(II)H and Z(bb)H

BF(H₁₂₅→inv) < 0.81 obs (0.83 exp)

arXiv:1404.1344

Future plans : combination with indirect limits !

arXiv:1404.1344

Try to leave no stone unturned !

Search for new physics using a wide range of methods
Familiar final states & unfamiliar final states
Directly detect particles with anomolous properties
Exotic decays of 125 GeV Higgs !

► No signals yet...

► Hope for some hints in Run 2