Gaseous detectors and search of new physics

I. Giomataris CEA-Saclay

Previous developments

A high-energy gamma ray telescope I. Giomataris; G. Charpak, CERN-EP-88-94

A single electron shower G. Charpak, Y. Giomataris,, A. Gougas,NIM.A343:300,1994.

The trigger for Beauty

G. Charpak, I. Giomataris, L.Lederman, NIMA306(1991)439 Developed by Lausanne Uni, Saclay, CERN

A Hadron Blind Detector (HBD) I. Giomataris, G. Charpak, NIM A310(1991)589

Virtue of the small gap Y. Giomataris, NIM A419, p239 (1998)

Optimum gap : 30 - 100 microns

Earlier Micromegas performance

I. Giomataris

High radiation resistance : > 30 mC/mm2 > 25 LHC years G. Puill, et al., IEEE Trans. Nucl. Sci. NS-46 (6) (1999)1894.

A. Delbart, Nucl.Instrum.Meth.A461:84-87,2001

Sub-nanosecond time resolution

12	Pitch(µm)	Gas mixture	Institute
60	317	Ar + 10% DME	Saclay
45	200	Ar + 25% CO2	Subatech
50	200	Ne + 10% DME	Mulhouse
42	100	Ar + 10% Isobutane	Saclay
29	100	He+ 6% Isobutane + 10% CF ₄	Saclay
25	50	He + 20% DME	Saclay
<u>12</u>	100	CF ₄ + 20% Isobutane	Saclay

Micromegas fabrication technologies

Bulk micromegas : pre-stretched steel mesh laminated together with a PCB support and a photoresistive layer, later removed apart where pillars are formed, *I. Giomataris et al., NIMA 560 (2006) 405*

Micromegas + micro-pixels

micro-Bulk, 50 μm, 25 and 12.5 μm gaps fabricated

Very good energy resolution 11% at 5.9 keV

- Flexible structure (cylinder)
- Low material
- Low radioactivity

Piggy Back: read-out separated from the active volume

T2K Micromegas TPC – Bulk technology 3xTPCs, 6 end plates, 72 Micromegas

A high pressure TPC

-1000

-500

500

1000

Construction of large chambers in ATLAS Goal : 1200 m2 total detector surface

Industrialization is going on through ELVIA, ELTOS

Micromegas micro-bulk in CAST

International Axion Observatory (IAXO) A new proposed experiment *JCAP 1106:013,2011*

8 COIL MAGNET L= 20 M 8 BORES: 600 MM DIAMETER EACH 8 X-RAYS OPTIC + 8 DETECTION SYSTEMS ROTATING PLATFORM WITH SERVICES

IAXO technologies – Baseline

IAXO telescopes

Slumped glass technology with multilayers

IAXO detectors

Discrimination from event topology in gas

Micromegas gaseous detectors

Long trajectory in CAST

Radiopure components + shielding

Zaragoza + CEA (+ others) expertise

Also considered: Ingrid, MMCs, CCDs

- Cost-effective to cover large areas
- Based on NuSTAR developments
- Focal length ~5 m
- 60-70% efficiency
 LLNL+UC+DTU+MIT
- expertise

IAXO magnet

- Superconducting "detector" magnet.
- Toriodal geometry (8 coils)
- Based on ATLAS toroid technical solutions.
- CERN+CEA expertise
- 8 bores / 20 m long / 60 cm Ø per bore

ILC TPC project - Large International collaboration

G. Aarons et al., arXiv:0709.1893, M. S. Dixit et al., NIMA 518 (2004) 521, M. Kobayashi et al., NIMA581(2007)265,

Momentum resolution=5x10⁻⁵

ILC TPC prototype with Micromegas

Event in DESY test beam

TPC Micromegas advantages

12

14

16 z / cm

- Ion suppression .1%
- No ExB effect
- Great resolution $\sim 40 \ \mu m$ •
- Good energy resolution

Applications in neutron detection

n-TOF MicroMegas-based neutron transparent flux monitor and profiler

F. Belloni et al., Mod.Phys.Lett. A28 (2013) 1340023

Micromégas Concept for Laser MégaJoule and **ICF** Facilities M. Houry et al., NIM,557(2006)648

J. Pancin et al., NIMA, 592(2008)104

Muon tomography using Micromegas detector

D. Attie, S. Bouteille, S. Procureur et al.

'Chateau d'eau' at Saclay

ScanPyramids Mission

Cheops: Discovery of a new cavity Press released: October 15th, 2016

1600

Fast timing Picosecond Micromegas

CEA-Saclay, CERN, Thessaloniki, Athens, Princeton, USTC, San Diego

Test with UV fs laser @ IRAMIS-CEA

UV Photocathodes on MgF window: $CsI, Cr, Al, Diamond (10-50nm thick) \sum_{g=0.2}^{-0.1}$

January 2017, Cr 18nm, single electrons/pulse MM amplification 10⁴, preamplification 10-50

2016-2017 beam tests with 150 GeV muons @ SPS H4

June 2016

- Sensors: Standard bulk Micromegas
- Photocathodes: 3,5mm MgF₂
 CsI photocathodes : CsI, Cr, Diamond
 + 6 nm Al + 10.5 nm CsI
- Gas mixtures: Ne/C₂H₆/CF₄ (80/10/10) Ne/CH₄ (95/5) CF4 / C₂H₆ (sealed mode)

Gamma-ray polarimetry with TPC Micromegas + GEM: using the pair production

When the photon energy is above the pair creation threshold (>1.022 MeV)

Fermi telescope can perform polarimetry at energies > 100 MeV Azimuthal scattering anisotropy of the pair Making a histogram of the azimuthal distribution gives polarized fraction and polarization direction

The HARPO detector can do it between 1 MeV and 100 MeV with high precision

P. Gros et al. arXiv:1706.06483

Soft X-ray polarimetry with 'Piggy back' Micromegas

Recorded events with 8 keV linerarly polarized in helium-isobutane

-100

0

Ejection angle (degrees)

100

200

0 EL -200 Second part Spherical detector Light-dark matter search and low-energy neutrino physics

Radial TPC with spherical proportional counter read-out

Saclay-Thessaloniki-Saragoza

A Novel large-volume Spherical Detector with Proportional Amplification read-out, I. Giomataris *et al.*, JINST 3:P09007,2008

- Simple and cheap
- Large volume
- single read-out
- Robustness
- Good energy resolution
- Low energy threshold
- Efficient fiducial cut
- Low background capability

Rejection power- rise time cut

Using Cd-109 source – December 2009 Irradiate gas through 200 μ m Al window P = 100 mb, Ar-CH₄ (2%)

If rt ~ 0.0155 ms ==> R = 65 cm 0.014 ms ==> ~70% of signal

Energy resolution ~ 6 % and 9 % for Cu and Cd

Particle identification capability at MeV energy Ar/CH₄ + 3g ³He @ 200 mb SPC 130cm Ø @ LSM

Low-energy calibration source Argon-37

Home made Ar-37 source: irradiating Ca-40 powder with fast neutrons 7x10⁶neutrons/s Irradiation time 14 days. Ar-37 emits K(2.6 keV) and L(260 eV) X-rays (35 d decay time)

First measurement with Ar-37 source Total rate 40 hz in 250 mbar gas, 8 mm ball 240 eV peak clearly seen A key result for light dark matter search

Low background detector d=60 cm p=10 bar

University of Thessaloniki detector

Bibliography

Basic R@D detector in Saclay

Queens University test sphere

University of Tsinghua - HEP detector

Gas output or air input

University of Saragoza detector

system

window

I Giomataris et al., JINST 3:P09007,2008., I Giomataris and J.D. Vergados, Nucl.Instrum.Meth.A530:330-358,2004, I. Giomataris and J.D. Vergados, Phys.Lett.B634:23-29,2006. I. Giomataris et al. Nucl.Phys.Proc.Suppl.150:208-213,2006., S. Aune et al., AIP Conf.Proc.785:110-118,2005. J. D. Vergados et al., Phys.Rev.D79:113001,2009., E Bougamont et al. arXiv:1010.4132 [physics.ins-det], 2010

G. Gerbier et al.,arXiv:1401.790v1

NEWS collaboration

Queen's University Kingston, IRFU/Saclay , LSM, Thessaloniki University, LPSC Grenoble, TU Munich, PNNL, TRIUMPH + Birmingham University

NEWS-LSM: Exploration of light dark matter search at LSM Detector installed at LSM end 2012: 60 cm, Pressure = up to 10 bar <u>Gas targets:</u> Ne, He, CH4

Backround evolution of the detector

Alpha rate evolution

 β/γ rate evolution

New development with PPNL Electropolishing of internal copper sphere + Pure copper electroplating at LSM

Current sensitivity with Neon at 3 bar Data 40.5 days, threshold 30 eV

Q. Arnaud et al., Astroparticle Physics. 10.1016/j.astropartphys.2017.10.009.

NEWS-SNO with compact shield : implementation at SNOLAB by fall 2017 Funded mainly by Canadian grant of excellence and ANR-France

> 140 cm Ø detector, 10 bars, Ne, He, CH_4 Copper 1 mBq/kg Compact lead –ancient- & PE shield solution

NEWS-SNOLAB project sensitivity

Multi-ball 'ACHINOS' structure Developed in Saclay in collaboration with University of Thessaloniki

Advantages

- Amplification tuned by the ball size:
- 1mm diameter for high pressure
- -Volume electric field tuned by the size
- of the ACHINOS structure
- Detector segmentation: 3D TPC like

Using 3D printer

Additional physics

Neutrino-nucleus coherent elastic scattering

 $v + N \rightarrow v + N \sigma \approx N^2 E^2$, D. Z. Freedman, Phys. Rev.D,9(1389)1974

High cross section but very-low nuclear recoil

Illustration: using the present prototype at 10 m from the reactor, after 1 day

Detector threshold (electrons)	1	2	3	4
Xe	105	32	3	0
Ar	42	24	9	4
Ne	18	12	7	4

Ev [MeV]

A dedicated Supernova detector

Simple and cost effective - Life time >> 1 century Through neutrino-nucleus coherent elastic scattering

Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006

Sensitivity for galactic explosion For p=10 Atm, R=2m, D=10 kpc, $U_v = 0.5 \times 10^{53}$ ergs # Number of events (after quenching, $E_{th} = 0.25$ keV) He Ne Ar Kr Xe Xe (with Nuc. F.F) 0.08 1.5 6.7 23.8 68.1 51.8

Idea : A world wide network of several of such dedicated Supernova detectors To be managed by an international scientific consortium and operated by students **Competitive double beta decay experiment with Xe-136 at 50bar** In collaboration with CNBG (F. Piquemal et al.,), CPPM (J. Busto et al.,) The goal is to reach a record low background level << 10⁻⁴/keV/Kg/y and an energy resolution of .3%

Simulation model

By J. Galan Sphere diameter: 2 m Shield 30 cm copper Xenon gas at 50 bar (1272 Kg) Vessel Copper activity μBq/kg : Aurubis commercial ²³²Th= 1, ²³⁸U= 1 PNNL ²³²Th=.034, ²³⁸U=.13

Results are very encouraging: Expected background rate in the region of Q_{bb} (2.46 MeV) 8.x10⁻⁵/keV/Kg/ year Arubis copper 1.54x10⁻⁵/keV/Kg/ year PNNL copper (compared to 2x10⁻³/keV/Kg/ year of running experiments)

If additional rejection is required: a new idea

Background free double beta decay experiment, *I. Giomataris*, J.Phys.Conf.Ser. 309 (2011) 012010 The idea is to detect Cherenkov light emitted by two electrons and then reject background

from single electrons (Compton scattering etc..)

Xenon-136 at high pressure of about 25-40 bar is ideal to keep high efficiency for double electrons, Good enough electron path and reduce multiple scattering

A simple read-out is the standard spherical detector signal combined with

CsI photocathode layer deposited at the internal vessel surface, inducing a <u>delayed signal</u>

THANK YOU

I. Giomataris

Quenching factor measurements

Goal: measure QF down to 500 eV ion energy using the Grenoble MIMAC facility for H, He, Ne, CF4, Ar, Xe at various pressures

Previous investigations with a 15 cm sphere show the capability to measure 500 eV He-4 ions with an estimated QF of about 25% *Saclay, Grenoble, Thessaloniki, Queen's-Kingston*

