Imperial College London

SHEDDING LIGHT ON DARK MATTER WITH LUX

Henrique Araújo Imperial College London

Ray was here

On behalf of the LUX Collaboration

University of Birmingham, 14 May 2014

OUTLINE

- Why dark matter(s)
- Catching WIMPs with the noble liquid xenon
- Fiat LUX! First results
- Beyond LUX and ZEPLIN

How do you solve a problem like DM?

Astrophysics

Astrophysical structures do not contain enough visible matter to keep them gravitationally bound

> 1937 ApJ 86, 217 ON THE MASSES OF NEBULAE AND OF CLUSTERS OF NEBULAE

> > F. ZWICKY

ROTATION OF THE ANDROMEDA NEBULA FROM A SPECTROSCOPIC SURVEY OF EMISSION REGIONS*

> VERA C. RUBIN[†] AND W. KENT FORD, JR.[†] Department of Terrestrial Magnetism, Carnegie Institution of Washington and Lowell Observatory, and Kitt Peak National Observatory[‡]

DISTRIBUTION OF DARK MATTER IN NGC 3198

H Araújo

How do you solve a problem like DM?

Cosmology

380,000 years

after Big Bang

 Λ -CDM is extremely successful: with two dark components (DE & DM), it predicts the distribution and evolution of the baryonic matter (the other 5%)

2.0

15

ເຊັ້ 1.0

How do you solve a problem like DM?

• Particle physics

There is Physics Beyond the Standard Model (besides the obvious...)

E.g., why is the Higgs so light?

Supersymmetry can protect the Higgs mass from quantum corrections and keep it at the electroweak scale. SUSY would – quite independently – provide excellent dark matter candidates.

But no sign of SUSY at the LHC yet...

How to catch a WIMP

1. <u>Direct detection</u> (scattering XS)

- Nuclear (atomic) recoils from elastic scattering
- (annual modulation, directionality, A + J dependence)
- Galactic DM at the Sun's position our DM!
- Mass measurement (if not too heavy)

2. Indirect detection (decay, annihil. XS)

- High-energy cosmic-rays, γ-rays, neutrinos, etc.
- Over-dense regions, annihilation signal $\propto n^2$
- Challenging backgrounds
- 3. <u>Accelerator searches</u> (production XS)
- Missing transverse energy, monojets, etc.
- Good place to look for particles...
- Mass measurement poor (at least initially)
- May not establish that new particle is <u>the</u> DM...

WIMP-nucleus elastic scattering rates

The 'spherical cow' galactic model

- DM halo is 3-dimensional, stationary, with no lumps
- Isothermal sphere with density profile $ho \, {\propto} \, r^{\, -2}$
- Local density $\rho_0 \sim 0.3 \text{ GeV/cm}^3$ (~1/pint for 100 GeV WIMPs)

Maxwellian (truncated) velocity distribution, f(v)

- Characteristic velocity v₀=220 km/s
- Escape velocity v_{esc}=544 km/s
- Earth velocity v_e=230 km/s

Nuclear recoil energy spectrum [events/kg/day/keV]

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_{\chi} {\mu_A}^2} F^2(q) \int_{v_{\min}}^{v_{\max}} \frac{f(\vec{v})}{v} d^3 v$$
$$\frac{dR}{dE_R} \approx \frac{R_0}{E_0 r} e^{-E_R / E_0 r}, \ r = \frac{4m_W m_T}{(m_W + m_T)^2} \le 1$$

H Araújo

 E_{th}

~ few keV

dR

dE

THE NOBLE LIQUID XENON

WIMP SEARCH TECHNOLOGY ZOO

Ionisation Detectors

CRESST, ROSEBUD

cryogenic (<50 mK)

 CF_3Br , CF_3I , C_3F_8 , C_4F_{10} COUPP, PICASSO, SIMPLE

TWO-PHASE XENON DETECTOR / TPC

• S1: LXe is an excellent scintillator

- Density: 3 g/cm³
- Light yield: >60 ph/keV (0 field)
- Scintillation light: 178 nm (VUV)
- Nuclear recoil threshold ~5 keV
- S2: Even better ionisation detector
 - S1+S2 allows mm vertex reconstruction
 - Sensitive to single ionisation electrons
 - Nuclear recoil threshold <1 keV

And a great WIMP target too

- Scalar WIMP-nucleon scattering rate dR/dE~A²
- Odd-neutron isotopes (¹²⁹Xe, ¹³¹Xe) enable spin-dependent sensitivity
- No damaging intrinsic backgrounds (¹²⁷Xe, ^{129m/131m}Xe, ⁸⁵Kr, ¹³⁶Xe)

RESPONSE MECHANISM

- Understanding the detector response to nuclear recoils (NR) and electron recoils (ER) around detection threshold is crucial
- Electron-ion <u>recombination</u> is the key parameter
- NEST model able to predict S1 and S2 signals as a function of:
 - Particle species (α , β , γ , NR)
 - Applied electric field
 - Light yield of chamber
 - Recoil energy

SCINTILLATION (S1)

- Detected with low-background photomultiplier tubes in high reflectance chamber
 - 178 nm emission (no WLS)

- Nuclear recoil yield (L_{eff})
 - Measured with neutrons
 - Quenched wrt electron recoils
 - dE/dx model no good at low E!
 - Decreases gently to lower energy down to ~3 keV (measured)

IONISATION (S2)

Measured via electroluminescence in xenon vapour

- Single electron sensitivity (easily)
- High ionisation yield
- Allows highly efficient trigger
- Position and energy estimation
- Increases gently to lower energy down to ~3 keV (measured)

BACKGROUND MITIGATION STRATEGY

Low background environment

- Operation deep underground
- Material screening programme
- Local shielding (e.g. water)

Reject dominant ER background

 ER-NR discrimination by S2/S1 (electric field, light collection)

Exploit self-shielding

Large, dense, continuous medium
 allied to good vertex resolution (few mm)

Lix Large Underground Xenon experiment

SANFORD UNDERGROUND RESEARCH FACILITY Former Homestake Mine, Lead, South Dakota

LINC LARGE UNDERGROUND XENON EXPERIMENT

Two-phase xenon detector – LXe Time Projection Chamber

- 250 kg (active) mass of ultrapure liquid xenon (370 kg total)
- S1 and S2 light read out by two arrays of 62 ULB photomultiplier tubes
- External radioactivity shielded by ultrapure water (muon Cerenkov detector)

CONSTRUCTION & SURFACE TESTS

LUX Detector: arxiv:1211.3788

Surface tests: arxiv:1210.4569

SURF – DAVIS CAVERN, 4850-FT U/G LEVEL

LUX Water Tank in Davis Campus

Ray Davis' Solar Neutrino Experiment

DAVIS CAMPUS LAYOUT

HARDWARE SYSTEMS – KRYPTON REMOVAL

Xenon sampling (ppb-ppt)

HARDWARE SYSTEMS XENON PURIFICATION

- Removal of electronegative impurities to <ppb level
- Electrons from deepest interactions (near cathode) must be able to drift to liquid surface w/o being captured

Free electron lifetime

Xenon circulation system (230 kg/day)

Drift lengths ~1 m achieved in weeks Combination of

- Materials selection
- Gas purification
- Ultra-sensitive sampling

have all but eliminated this risk

CALIBRATION

• Self-shielding becoming too successful! How can we calibrate these detectors?

• Spike LXe target with clever sources...

RESPONSE CALIBRATION

• S1 and S2 response calibration with dispersed ^{83m}Kr radioisotope

- Routine injection, decays within detector, emitting 2 CEs ($T_{1/2}$ =1.86 hrs)

Rb-83 infused into zeolite, located within xenon gas plumbing

SIGNAL/BK CALIBRATION

- ER region (background) calibrated with dispersed tritium
 - CH₃T (β_{max} =18 keV): one off injection, removed by purification system
- NR region (signal) calibrated with external neutron sources

ER/NR DISCRIMINATION

99.6% average discrimination in 2-30 S1 photoelectrons (LUX goal was 99.4%), retaining 50% nuclear recoil acceptance – and gets better at low energy!

S1 ENERGY ESTIMATION

- As given by NEST down to 3 keV_{nr}, and 0 below that (conservative!)
- S1 photon detection efficiency >2.5x higher than XENON100

S1 ENERGY THRESHOLD

- Good agreement between data and simulation (both ER and NR)
- S1 threshold (50% efficiency) corresponds to ~4.3 keVnr

DOMINANT BACKGROUNDS

DOMINANT BACKGROUNDS

- Backgrounds in ROI: 118 kg, 0.9-5.3 keV_{ee}
- Negligible neutron background (0.06 evts)

Component	Source	mDRUee (x10 ⁻³ evt/kg/day/keVee
γ-rays	Internal components, inc. PMTs (80%)	1.8 ±0.2 _{stat} ±0.3 _{sys}
¹²⁷ Xe *	Cosmogenic	$0.5 \pm 0.02_{stat} \pm 0.1_{sys}$
²¹⁴ Pb	²²² Rn	0.11-0.22(90% CL)
⁸⁵ Kr	3.5 ± 1 ppt	0.13 ±0.07 _{sys}
Predicted	Total	2.6 ±0.2 _{stat} ±0.4 _{sys}
Observed	Total	3.6 ±0.3 _{stat}

* Xe-127: $T_{1/2}$ =36.4 days (0.87 \rightarrow 0.28 mDRU during run)

ER < 5 keVee

LUX RUN 3

WIMP-search run

- 85.3 live days in 2013
- 118 kg fiducial mass
- Fiducial event rate at low energy:
 - ~2 events/day

amplitude (phe/10ns)

0

Week

S1+S2 SIGNALS FROM 1.5 keV ELECTRON

BACKGROUND AT WIMP SEARCH ENERGIES S1 summed across all channels S2 summed across all channels gate grid 0.8 **S1** S2 (phe/10 ns) 50 sum sum æ nijdue 100 drift time (μs) $\sim\sim\sim$ -0.2 0.2 21 time (µs) 22 150 0 04 time (us) triggered on S2 200 wall corner wall face 250 150 300 1 100 95% single photoelectrons > threshold cathode grid 350 50 300 200 400 0 0 100 500 600 5 10 0 15 20 25 PMT channel radius² (cm²) number

time (µs)

SOME OTHER WIMPS

Akerib *et al* (2013), PRL 112, 091303

LUX – FIRST RESULTS

Events recorded in 85.3 live days of exposure

The Economist

"Absence of evidence, or evidence of absence?"

New York Times

"Dark Matter Experiment Has Detected Nothing, Researchers Say Proudly"

PLR SIGNAL ESTIMATION

 $\mathcal{L}_{WS} = \frac{e^{-N_s - N_{Compt} - N_{Xe-127} - N_{Rn222}}}{\mathcal{N}!} \prod_{i=1}^{\mathcal{N}} N_s P_s(x; \sigma, \theta_s) + N_{Compt} P_{ER}(x; \theta_{Compt}) + N_{Xe-127} P_{ER}(x; \theta_{Xe-127}) + N_{Rn} P_{ER}(x; \theta_{Rn})$ $\text{Observables:} \qquad \mathbf{x} = (S1, \log_{10}(S2/S1), r, z)$ $\text{Parameter of interest:} \qquad N_s$ $\text{Nuisance parameters:} \qquad N_{Compt}, N_{Xe-127}, N_{Rn,Kr-85}$

SIGNAL MODEL: simulated 2D PDFs including resolution/efficiencies; uniform in (r²,z)

PLR SIGNAL ESTIMATION

BACKGROUND MODELS: simulated 2D PDFs including resolution/efficiencies

External radioactivity (Compton-scattered gammas)

Xe-127 atomic cascade with HE gamma escape

og10(S2/S1)

SPIN-INDEPENDENT WIMP-NUCLEON XS

H Araújo

LUX COLLABORATION

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman David Malling James Verbus Samuel Chung Chan Dongqing Huang

PI. Professor

Postdoc

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student Graduate Student

lent

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Posteloc
Wing H To	Posteloc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kafi Pech	Graduate Student

Imperial College

London	Imperial College London	
Henrique Araujo	PI, Reader	
Tim Sumner	Professor	
Alastair Currie	Postdoc	
Adam Bailey	Graduate Student	

Lawrence Berkeley + UC Berkeley

Bob Jacobsen	PI, Professor
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Carlos Hernandez Faham	Postdoc
Victor Gehman	Scientist
Mia Ihm	Graduate Studen

L	awrence Liverm	ore	

PI, Professor

Postdoc

Postdoc

Posteloc

Posteloc

Assistant Professor

Senior Researcher

Adam Bernstein	PI, Leader of Adv. Detectors Group
Dennis Carr	Mechanical Technician
Kareem Kazkaz	Staff Physicist
Peter Sorensen	Staff Physicist
John Bower	Engineer

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves Claudio Silva

M SD School of Mines

i	PI, Professor
sch	Graduate Student
t	Graduate Student

Project Engineer

Support Scientist

Xinhua Ba

Tyler Liebs

Doug Tied

David Taylor Mark Hanhardt

James White T Robert Webb

Mani Tripati

Bob Svoboo Richard Lan Britt Holbro John Thoms Ray Gerhard Aaron Mana Matthew Szy

Richard Ott

Jeremy Moc

James Mora

Nick Walsh Michael Wo

Sergey Uvar

Brian Lenar

Chamkaur Ghao

Lea Reichhart

磭 Texas A&M

James White †	PI, Professor
Robert Webb	PI, Professor
Rachel Mannino	Graduate Student
Clement Sofka	Graduate Student

UC Davis

i	PI, Professor
a	Professor
der	Professor
ok.	Senior Engineer
on	Senior Machinist
I	Electronics Engineer
laysay	Postdoc
/dagis	Posteloc
	Posteloc
k	Graduate Student
d	Graduate Student
	Graduate Student
oda	Graduate Student
ov	Graduate Student
do	Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmon Carmona	Posteloc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

University College London

≜UC PI. Lecturer Postdoc

University of Edinburgh

University of Maryland

Richard Knoche

University of Rochester

Frank Wolfs Wojtek Skutski Eryk Druszkiewicz Mongkol Moongweluwan

U.	University	of South	Dakota
n ·		-	D /

Dongming Mei	PI, Professor
Chao Zhang	Postdoc
Angela Chiller	Graduate Student
Chris Chiller	Graduate Student
Dana Byram	*Now at SDSTA

Yale

lex Murphy		
aolo Beltrame		
ames Dobson		

Carter Hall

Attila Dobi

Jon Balajthy

PI, Professor Senior Scientist

PI, Professor Graduate Student

Graduate Student

Graduate Student

PI, Reader

Postdoc

Research Fellow

NEXT-GENERATION SEARCH ZEPLIN \rightarrow LUX \rightarrow LUX-ZEPLIN (LZ)

- 7 tonne (active) LXe TPC
- Skin + Veto outer detectors
- Within LUX water tank 🤘
- Dominant backgrounds
 from astrophysical neutrinos
- 'DM Gen-2 down-selection' announcement imminent in US
- Supported by DMUK consortium
- Construction from end 2014
- Operations from 2017/18

TO BOLDLY GO – WHERE?

SUMMARY

- LUX Run3 set world-leading limits, and clarified low mass 'excitements'
- Less conservative Run3 analysis coming soon (lower S1 & S2 threshold)
- LUX Run4 about to start, with potentially ~5x better sensitivity reach
- Decision on next-generation LZ in the US and in the UK is imminent
- One day DM will no longer be 'cool'. Until then, we must keep looking!

Stephen Collins, The Guardian, Saturday 27 April 2013

RESERVE SLIDES

keVee and keVnr energy scales

Xe-127 background

Isotope of interest for WIMP search = ¹²⁷Xe

- EC decay with gammas 203 or 375 keV, possibility to escape the active volume.
- X-ray / Auger emission corresponding to ¹²⁷I levels: 33.2 keV_{ee} (K), 5.3 (L), 1.1 (M), 0.19 (N)
- Depth-dependent background profile; data follows prediction
- Contribution modeled as a nuisance in the PLR analysis
- Accounts for 0.5 mDRU_{ee} (avg) in WIMP ROI over Run 3
- It will have disappeared for Run 4

118 kg fiducial volume

Data selection

Cut	Description	Events Remaining
All triggers	S2 Trigger >99% for S2 _{raw} >200 phe	83,673,413
Detector stability	Cut periods of excursion for GXe pressure, LXe level, applied voltages	82,918,901
Single scatter events	Identification of S1 and S2; single scatter cut	6,585,686
S1 energy	Accept 2-30 phe (energy ~0.9-5.3 keVee, ~3-18 keVnr)	26,824
S2 energy	Accept 200-3300 phe (>8 S2 electrons) Removes single-e/small S2 edge events	20,989
S2 single electron quiet cut	Cut if >100 phe outside S1+S2 identified in ± 0.5 ms around trigger (0.8% deadtime)	19,796
Drift time cut from grids	Cut away from cathode and gate regions, 60 < drift time < 324 μs	8731
Fiducial volume (R,Z) cut	Radius < 18 cm, 38 < drift time < 305 μs, 118 kg fiducial	160

PLR fit projections

NR calibration with D-D generator

- Double scatters used to measure Q_i to ~1 keVr
- Single scatters used to measure L_{eff} to ~2 keVr

NR calibration with D-D generator

