Imperial College London

SHEDDING LIGHT ON DARK MATTER WITH LUX

Henrique Araújo Imperial College London

Roy was here

On behalf of the LUX Collaboration

University of Birmingham, 14 May 2014

OUTLINE

- Why dark matter(s)
- Catching WIMPs with the noble liquid xenon
- **Fiat LUX! First results**
- Beyond LUX and ZEPLIN

How do you solve a problem like DM?

• Astrophysics

Astrophysical structures do not contain enough visible matter to keep them gravitationally bound

> 1937 ApJ 86, 217 ON THE MASSES OF NEBULAE AND OF **CLUSTERS OF NEBULAE**

> > F. ZWICKY

ROTATION OF THE ANDROMEDA NEBULA FROM A SPECTROSCOPIC SURVEY OF EMISSION REGIONS*

> VERA C. RUBINT AND W. KENT FORD, JR.T Department of Terrestrial Magnetism, Carnegie Institution of Washington and Lowell Observatory, and Kitt Peak National Observatory¹

DISTRIBUTION OF DARK MATTER IN NGC 3198

H Araújo

How do you solve a problem like DM?

• Cosmology

Λ-CDM is extremely successful: with two dark components (DE & DM), it predicts the distribution and evolution of the baryonic matter (the other 5%)

No Big Bang

 20

1.5

ಡೆ 1_O

O.5

OС 0.0

 0.5

 $\Omega_{\rm m}$

 1.0

380,000 years after Big Bang

How do you solve a problem like DM?

• Particle physics

There is Physics Beyond the Standard Model (besides the obvious…)

E.g., why is the Higgs so light?

Supersymmetry can protect the Higgs mass from quantum corrections and keep it at the electroweak scale. SUSY would – quite independently – provide excellent dark matter candidates.

But no sign of SUSY at the LHC yet…

How to catch a WIMP

1.Direct detection (scattering XS)

- **Nuclear (atomic) recoils from elastic scattering**
- (annual modulation, directionality, $A + J$ dependence)
- Galactic DM at the Sun's position our DM!
- Mass measurement (if not too heavy)

2. Indirect detection (decay, annihil. XS)

- High-energy cosmic-rays, γ-rays, neutrinos, etc.
- Over-dense regions, annihilation signal ∞ n²
- Challenging backgrounds
- 3. Accelerator searches (production XS)
- Missing transverse energy, monojets, etc.
- Good place to look for particles…
- Mass measurement poor (at least initially)
- May not establish that new particle is the DM…

WIMP-nucleus elastic scattering rates

The 'spherical cow' galactic model

- DM halo is 3-dimensional, stationary, with no lumps
- Isothermal sphere with density profile $\rho \propto r^{-2}$
- Local density $\rho_0 \sim 0.3$ GeV/cm³ (~1/pint for 100 GeV WIMPs)

Maxwellian (truncated) velocity distribution, f(v)

- Characteristic velocity v_0 =220 km/s
- Escape velocity v_{esc} =544 km/s
- Earth velocity *v_F*=230 km/s

 \sim few keV

Nuclear recoil energy spectrum [events/kg/day/keV]

$$
\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_{\chi} \mu_A^2} F^2(q) \int_{v_{\text{min}}}^{v_{\text{max}}} \frac{f(\vec{v})}{v} d^3v
$$

$$
\frac{dR}{dE_R} \approx \frac{R_0}{E_0 r} e^{-E_R/E_0 r}, \quad r = \frac{4m_W m_T}{(m_W + m_T)^2} \le 1
$$

H Araújo

 E _{th}

 dR

 dE

THE NOBLE LIQUID XENON

WIMP SEARCH TECHNOLOGY ZOO

Ionisation Detectors

Targets: $CaWO₄$ BGO, $Al₂O₃$ CRESST, ROSEBUD cryogenic (<50 mK)

Bubbles & Droplets

 CF_3Br , CF_3I , C_3F_8 , C_4F_{10} COUPP, PICASSO, SIMPLE

TWO-PHASE XENON DETECTOR / TPC

• **S1: LXe is an excellent scintillator**

- $-$ Density: 3 g/cm³
- Light yield: >60 ph/keV (0 field)
- Scintillation light: 178 nm (VUV)
- **Nuclear recoil threshold** ∼**5 keV**
- **S2: Even better ionisation detector**
	- S1+S2 allows mm vertex reconstruction
	- Sensitive to single ionisation electrons
	- **Nuclear recoil threshold** <**1 keV**

• **And a great WIMP target too**

- Scalar WIMP-nucleon scattering rate dR/dE∼A2
- Odd-neutron isotopes $(^{129}$ Xe, 131 Xe) enable spin-dependent sensitivity
- No damaging intrinsic backgrounds $(^{127}$ Xe, $^{129m/131m}$ Xe, 85 Kr, 136 Xe)

RESPONSE MECHANISM

- Understanding the detector response to nuclear recoils (NR) and electron recoils (ER) around detection threshold is crucial
- Electron-ion recombination is the key parameter
- NEST model able to predict S1 and S2 signals as a function of:

Electron/Nuclear

recoil

Ionisation

- Particle species (α, β, γ, NR)
- Applied electric field
- Light yield of chamber
- Recoil energy

Excitation

SCINTILLATION (S1)

- **Detected with low-background photomultiplier tubes in high reflectance chamber**
	- 178 nm emission (no WLS)

- **Nuclear recoil yield (L_{eff})**
	- Measured with neutrons
	- Quenched wrt electron recoils
	- dE/dx model no good at low E!
	- **Decreases gently to lower energy down to** ∼**3 keV (measured)**

IONISATION (S2)

• **Measured via electroluminescence in xenon vapour**

- Single electron sensitivity (easily)
- High ionisation yield
- Allows highly efficient trigger
- Position and energy estimation
- **Increases gently to lower energy down to** ∼**3 keV (measured)**

S1 S2

 \geq

 -10

Jinh Canadia

nplitude (mV)

160

140

SE

Santos *et al***, JHEP 12 (2011) 115**

90

BACKGROUND MITIGATION STRATEGY

Low background environment

- Operation deep underground
- Material screening programme
- Local shielding (e.g. water)

Reject dominant ER background

ER-NR discrimination by S2/S1 (electric field, light collection)

Exploit self-shielding

Large, dense, continuous medium allied to good vertex resolution (few mm)

LOX LARGE UNDERGROUND XENON EXPERIMENT

SANFORD UNDERGROUND RESEARCH FACILITY Former Homestake Mine, Lead, South Dakota

LOX LARGE UNDERGROUND XENON EXPERIMENT

Two-phase xenon detector – LXe Time Projection Chamber

- 250 kg (active) mass of ultrapure liquid xenon (370 kg total)
- S1 and S2 light read out by two arrays of 62 ULB photomultiplier tubes
- External radioactivity shielded by ultrapure water (muon Cerenkov detector)

CONSTRUCTION & SURFACE TESTS

LUX Detector: arxiv:1211.3788 Surface tests: arxiv:1210.4569

SURF – DAVIS CAVERN, 4850-FT U/G LEVEL

 $_{\mathsf{H}}$ Ray $_{\mathsf{G}}$ Davis' Solar Neutrino Experiment **LUX Water Tank in Davis Campus** $_{19}$

DAVIS CAMPUS LAYOUT

HARDWARE SYSTEMS – KRYPTON REMOVAL

HARDWARE SYSTEMS XENON PURIFICATION

- Removal of electronegative impurities to <ppb level
- **2013** • Electrons from deepest interactions (near cathode) must be able to drift to liquid surface w/o being captured

Free electron lifetime

Xenon circulation system (230 kg/day)

Drift lengths ∼1 m achieved in weeks Combination of

- Materials selection
- Gas purification
- Ultra-sensitive sampling

have all but eliminated this risk

CALIBRATION

• Self-shielding becoming too successful! How can we calibrate these detectors?

• Spike LXe target with clever sources…

RESPONSE CALIBRATION

• S1 and S2 response calibration with dispersed ^{83m}Kr radioisotope

– Routine injection, decays within detector, emitting 2 CEs ($T_{1/2}=1.86$ hrs)

Kr-83m calibration source:

Rb-83 infused into zeolite, located within xenon gas plumbing

SIGNAL/BK CALIBRATION

- ER region (background) calibrated with dispersed tritium
	- CH₃T (β_{max} =18 keV): one off injection, removed by purification system
- NR region (signal) calibrated with external neutron sources

ER/NR DISCRIMINATION

99.6% average discrimination in 2-30 S1 photoelectrons (LUX goal was 99.4%), retaining 50% nuclear recoil acceptance – and gets better at low energy!

S1 ENERGY ESTIMATION

- As given by NEST down to 3 keV_{nr}, and 0 below that (conservative!)
- S1 photon detection efficiency > 2.5x higher than XENON100

S1 ENERGY THRESHOLD

- Good agreement between data and simulation (both ER and NR)
- S1 threshold (50% efficiency) corresponds to ∼4.3 keVnr

DOMINANT BACKGROUNDS

DOMINANT BACKGROUNDS

- Backgrounds in ROI: 118 kg, 0.9-5.3 keV $_{ee}$
- Negligible neutron background (0.06 evts)

Component	Source	mDRUee $(x10-3$ evt/kg/day/keVee
γ -rays	Internal components, inc. PMTs (80%)	1.8 \pm 0.2 _{stat} \pm 0.3 _{sys}
$127xe$ *	Cosmogenic	0.5 ± 0.02 stat ± 0.1 svs
214P _b	222Rn	$0.11 - 0.22$ (90% CL)
85 Kr	3.5 ± 1 ppt	0.13 ± 0.07 _{sys}
Predicted	Total	2.6 \pm 0.2stat \pm 0.4sys
Observed	Total	3.6 ± 0.3 stat

* Xe-127: $T_{1/2}$ =36.4 days (0.87 \rightarrow 0.28 mDRU during run)

Measured DRU (89 livedays, 89 eff) $log_{10}(DRUse)$ 50 $\overline{0}$ 45 -0.5 40 Height [cm]
ಜಿ ಅ ಜಿ -1 -1.5 -2 20 -2.5 15 $10¹$ -3 200 0 400 600 Squared radius [cm²]

ER < 5 keVee

30

LUX RUN 3

WIMP-search run

- 85.3 live days in 2013
- 118 kg fiducial mass
- Fiducial event rate at low energy:
	- ~2 events/day

Week

S1+S2 SIGNALS FROM 1.5 keV ELECTRON

BACKGROUND AT WIMP SEARCH ENERGIES

SOME OTHER WIMPS

PRL 112, 091303

LUX – FIRST RESULTS Akerib et al (2013),

Events recorded in 85.3 live days of exposure

The Economist

"Absence of evidence, or evidence of absence?"

New York Times

"Dark Matter Experiment Has Detected Nothing, Researchers Say Proudly"

PLR SIGNAL ESTIMATION

 $\frac{e^{-N_s - N_{Compt} - N_{Xe-127} - N_{Rn222}}}{\mathcal{N}!}$ $\boldsymbol{\mathcal{N}}$ $\mathcal{L}_{WS} =$ $\prod N_s P_s(x;\sigma,\theta_s) + N_{Compt} P_{ER}(x;\theta_{Compt})$ $i=1$ $+N_{Xe-127}P_{ER}(x;\theta_{Xe-127})+N_{Rn}P_{ER}(x;\theta_{Rn})$ **Observables:** $x = (S1, log_{10}(S2/S1), r, z)$ **Parameter of interest:** N_s **Nuisance parameters:** N_{Compt}, N_{Xe-127}, N_{Rn.Kr-85}

SIGNAL MODEL: simulated 2D PDFs including resolution/efficiencies; uniform in (r2,z)

PLR SIGNAL ESTIMATION

BACKGROUND MODELS: simulated 2D PDFs including resolution/efficiencies

External radioactivity (Compton-scattered gammas)

Xe-127 atomic cascade with HE gamma escape

og10(S2/S1)

SPIN-INDEPENDENT WIMP-NUCLEON XS

H Araújo

LUX COLLABORATION

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman **David Malling James Verbus** Samuel Chung Chan **Dongqing Huang**

PI. Professor

Postdoc

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student Graduate Student

Imperial College

Lawrence Berkeley + UC Berkeley

PI, Professor

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Isabel Lopes Jose Pinto da Cunha **Vladimir Solovov** Luiz de Viveiros **Alexander Lindote**

M SD School of Mines

Project Engineer

Support Scientist

Tyler Liet

Doug Tie

David Taylor Mark Hanhardt

James White **Robert Webb Rachel Mann Clement Soft**

Bob Svob Richard La Britt Holbr John Thor Ray Gerha Aaron Mar

Jeremy M

James Mo

Nick Wals **Michael W**

Brian Len

Mike With

Dean Whit

Susanne I

Curt Nehr

Scott Has

 \triangleq UCI

Chamkaur Ghag

Lea Reichhart

Texas A&M 碌

UC Davis

UC Santa Barbara

University College London

PI. Lecturer Postdoc

University of Edinburgh

University of Maryland

Richard Knoche

University of Rochester

Frank Wolfs Wojtek \$ Eryk Dru **Mongko**

Attila Dobi

Jon Balajthy

œе

TO

Sidney

Markus

Nicole I

Brian To

PI, Professor

Postdoc

PI, Professor **Graduate Student**

PI, Reader

Research Fellow

Graduate Student Graduate Student

Senior Scientist

Graduate Student

Graduate Student

NEXT-GENERATION SEARCH $ZEPLIN \rightarrow LUX \rightarrow LUX-ZEPLIN (LZ)$

- 7 tonne (active) LXe TPC
- Skin + Veto outer detectors
- Within LUX water tank
- Dominant backgrounds from astrophysical neutrinos
- 'DM Gen-2 down-selection' announcement imminent in US
- Supported by DMUK consortium
- Construction from end 2014
- Operations from 2017/18

38

TO BOLDLY GO – WHERE?

SUMMARY

- LUX Run3 set world-leading limits, and clarified low mass 'excitements'
- Less conservative Run3 analysis coming soon (lower S1 & S2 threshold)
- LUX Run4 about to start, with potentially ∼5x better sensitivity reach
- Decision on next-generation LZ in the US and in the UK is imminent
- *One day DM will no longer be 'cool'. Until then, we must keep looking!*

Stephen Collins, The Guardian, Saturday 27 April 2013

RESERVE SLIDES

keVee and keVnr energy scales

Xe-127 background

■ Isotope of interest for WIMP search = 127 Xe

- EC decay with gammas 203 or 375 keV, possibility to escape the active volume.
- X-ray / Auger emission corresponding to ¹²⁷l levels: 33.2 keV_{ee} (K), 5.3 (L), 1.1 (M), 0.19 (N)
- Depth-dependent background profile; data follows prediction
- Contribution modeled as a nuisance in the PLR analysis
- Accounts for 0.5 mDRU_{ee} (avg) in WIMP ROI over Run 3
- It will have disappeared for Run 4

118 kg fiducial volume

Data selection

PLR fit projections

NR calibration with D-D generator

- Double scatters used to measure Q_i to ~1 keVr
- Single scatters used to measure L_{eff} to ~2 keVr

NR calibration with D-D generator

