

The XENON1T excess electron-recoil events

Guido Zavattini University of Ferrara and INFN – Ferrara XENON Bologna group on behalf of the XENON collaboration.

On-line seminar at the Birmingham Particle Physics group

XENON collaboration

Japan

X E N O N Derk Matter Project

XENON Technical Meeting, May 12-14, 2020

Andrii Terliuk (MPIK/Uni He...

Alexey Elykov Ethan Brown

Christopher Hils (JGU-Mai...

Michele lacovacci

XENON collaboration – direct Dark Matter searches

Star velocity profile in galaxies

Bullet cluster

Cosmic microwave background anisotropy

Indirect evidence:

Several observations on astronomical and cosmological scales indicate that about 27% of the mass-energy of the universe is 'Dark Matter' (does not couple electromagnetically) with an unknow composition. Only about 5% is ordinary matter.

Constraints on Dark Matter are:

- No electric charge
- No colour charge (strong interaction)
- No self interaction
- Stable or very long lifetime
- Interacts gravitationally

The XENON collaboration is searching for a direct interaction of Dark Matter particles with ordinary matter

WIMP searches

Nuclear recoil (NR)

Backgrounds in the 1 – 100 keV nuclear recoil energy range

1) Electron recoils (ER) from γ and β decays generate background in the WIMP energy region

Need to distinguish NR events from ER events

2) Nuclear recoils (NR) from radiogenic neutrons generate background in the WIMP energy region

A liquid xenon Time Projection Chamber (TPC) is an excellent choice

Dual phase Time Projection Chamber (TPC): principle

cS1 [PE]

Dual phase Time Projection Chamber: why liquid xenon

Why liquid xenon High density, self shielding Good scintillator (178 nm) Absence of long half-life isotopes (internal background)

Time Projection Chamber

- 3D position reconstruction of events
- ER/NR discrimination
- Rejection of multiple events
- Low energy threshold

Ideal detector for searching for Dark Matter and rare processes

XENON1T Time Projection Chamber

XENON1T location: LNGS underground labs.

INFN - Laboratori Nazionali del Gran Sasso

- XENON1T detector is naturally shielded by ~ 1.4 km of rock (3600 m equiv. H_2O): muon flux reduction of 10⁶.
- Further shielding is obtained with a Cherenkov muon veto water tank.
- Very careful choice of low radioactivity materials.
- Purification of the xenon (during filling and online cryogenic distillation)
- Self-shielding of the outer part of the detector thereby defining an internal fiducial volume.

NR vs. ER calibration

Blue: ER, Red: NR; —: median, \cdots : $\pm 2\sigma$

Nuclear recoil calibration with neutron generator

Blue: ER, Red: NR; —: median, \cdots : $\pm 2\sigma$

Electron recoil calibration with ²²⁰Rn. β decay from ²¹²Pb generates low energy events with half-life 10.6 h

Some leaking of ER events into the NR band.

Electron recoil energy calibration

The primary interaction will generate both scintillation light (n_{ph}) and ionisation (n_e) in a proportion depending on the total deposited energy

S2 [PE]

2D

Guido Zavattini, Birmingham Particle Physics group, October 21st 2020

S1

 ∞n_{ph}

S2

 ∞n_e

E =

W = 13.7

E[keV]

11

1D

╶┽_┪╡┊╡╪┽┽_┪╡╪╪[┿]╡_┪╡┽┽_{┿┪}╡^{┿┿┿}┥_┥╡

dN/dE

$$(n_{ph} + n_e) \cdot W = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$$

ER dominating background at low energy

1000

Best constraints on WIMP dark matter

with masses $> 3 \text{ GeV/c}^2$

Nuclear recoil searches: 1 tonne-year data

Pie charts indicate the relative probabilities of the event to be of a certain class for a best fit to a 200 GeV/ c^2 WIMPs with a cross-section of 4.6 x 10⁻⁴⁷ cm². Their size is related to the WIMP probability

Nuclear recoil searches – spatial distribution

Light grey dots: events outside the FV

O N Matter Proiect

Light and dark yellow: probability density percentiles of the radiogenic neutron background at 2σ and 1σ respectively

Pie charts indicate the relative probabilities of the event to be of a certain class for a best fit to a 200 GeV/ c^2 WIMPs with a cross-section of 4.6 x 10⁻⁴⁷ cm². Their size is related to the WIMP probability

X [cm]

45

30

15

-15

-30

-45

-45

Y [cm]

 R^2 [cm²]

Study of the electron recoil energy spectrum

Thanks to the low electron recoil background, the ER energy spectrum was also studied.

Search for: solar axions, neutrino magnetic moment (μ_v), bosonic Dark Matter

Would appear as excess events above the known background.

XENON1T characteristics

- Low background: < 100 ev/ton/anno/keV_{ee}
- Low energy threshold ~1 keV_{ee} (5 keV_{nr})
- Large exposure ~1 tonne*year

Data taking and event selection

Background model

The B₀ background model contains 10 components

Internal (uniformly distributed)

²¹⁴Pb (from ²²²Rn chain, dominating contribution)
 ⁸⁵Kr (reduced through cryogenic distillation)
 ¹³⁶Xe, ¹²⁴Xe
 ^{83mL/m} (model to be been for each time)

^{83m}Kr (residual traces from calibration)

Activated backgrounds

^{131m}Xe, ¹³³Xe, ¹²⁵I (time dependent)

External

Solar vMaterials (radio assay and GEANT4)

Background fit to data

^{131m}Xe rate evolution after neutron calibration (activation)

Background fit: All 226.9 days SR1_a: 55.8 days SR1_b: 171.2 days

(76 ± 2) ev / (ton*y*keV_{ee}) in [1,30] keV_{ee}

Lowest background ever achieved in this energy range!

Good fit over most of the energy range

60 SR1_ (55.8 dave

SR1 (226.9 days

SR1_b (171.2 days)

Energy [keV]

10

5

- 285 observed events
- 232±15 expected events from the best fit

ENON Dark Matter Project

 Would represent a 3.5σ fluctuation

Fit with data – 1 to 7 keV

120

100

80

0

-2

0

р

Guido Zavattini, Birmingham Particle Physics group, October 21st 2020

20

25

30

15

Energy [keV]

PHYS. REV. D 102, 072004 (2020)

Spatial and temporal event distribution

Spatial distribution R [cm] 1 - 7 keV 3.5 25 35 45 50 30 40 $10 \ 18$ Modulation + const (p-value: 0.73) 3.0 Rate [Events / day] 40 3 H decay + const (0.75) Const (0.70) 1T FV 20 Z [cm] Y [cm] **XENON** 0.5 Preliminary -600.02017-11 2017-03 2017-05 2017-07 2017-09 2018-01 -80Event rate between 1 keV and 7 keV is -40compatible with a constant during SR1 -100^{L}_{0} 500 1000 1500 2000 250 -20-4040 0 20 R^2 [cm²] X [cm] [1, 30 keV][1, 7] keV

Temporal evolution

Events between 1 and 7 keV are uniformly distributed within the fiducial volume.

Possible explanation - instrumental

- Incorrect reconstruction and description of efficiency?
 - 700 600 Events/keV 500 400 ^{220}Rn calibration data 300 200 **Best-fit** 100 SR1 ²²⁰Rn data 0 ь -2 10 12 14 2 8 0 6 4 Energy [keV]

- Fit to ²²⁰Rn (²¹²Pb) calibration data using same fit procedure
- No low energy distortions
- Validates the efficiency and reconstruction

Seems to be an unlikely explanation

Possible explanation - instrumental

• ER event band contamination from other classes of events?

- Leaking of Accidental Coincidences (AC) between S1 and S2 signals from uncorrelated events? No.

- Leaking from surface events (fraction of S2 is lost)? No.

Excess events are within the ER band. Unlikely explanation.

Possible explanation – background shape

Corrections to background shape a low energies

- Exchange effects and atomic screening lead to rate increase at low energies.

- Recent calculation (X. Mougeot) of the ²¹⁴Pb spectrum at low energies is estimated to have an error of at most of 6%

A 50% error is necessary to explain the data spectrum.

Unlikely explanation.

Forgotten contributions? – Tritium?

Tritium

- Beta emitter with half-life of 12.3 y.
- Q value of 18.6 keV)

Energy spectrum before and after taking into account efficiency and energy resolution

Favoured over B_0 at 3.2σ

Rate from ³H fit: (159±51) events/(t*y)

But from where? A) Cosmogenic activation in Xe?

B) Emanation from materials?

Possible origin of Tritium

A) Cosmogenic activation in Xe

Traces of water would imply the formation of HTO:

- Activation above ground: 32 tritium atoms per kg per day
- Slight decay during underground storage
- Condensation reduces contamination by factor ≈4000
- Purification with getters for hydrogen removal

Concentration from the fit indicates a factor 100 higher concentration than expected

Hypothesis A) seems unlikely

Possible origin of Tritium

B) Emanation from materials

Release of HTO or HT.

Natural abundance: $HTO:H_2O \sim 10^{-17}$ mol/mol To reach the measured concentration T:Xe ~ 10^{-24} mol/mol a $H_2O:Xe \sim 100$ ppb would be necessary Light yield in XENON1T implies $H_2O:Xe \sim 1$ ppb

Natural abundance HT: $H_2 \sim 10^{-17}$ mol/mol Again H_2 :Xe ~ 100 ppb

No constraints on the concentration H₂:Xe

Hypothesis B) cannot be excluded

Tritium conclusion: we can neither confirm nor rule out the tritium hypothesis

New physics? – Solar Axions

- The Axion was originally introduced as a solution to the non-violation of CP in the strong interaction: known as the strong CP problem. It is considered as a Dark Matter candidate.
- Axions should be produced in the Sun if they exist.

Different production mechanisms:

- Axion-electron coupling g_{ae}: Atomic recombination and excitation, Bremstrahlung, Compton. ABC axions.
- Axion-photon coupling $g_{a\gamma}$ via the Primakoff effect.
- Nuclear transition of the ⁵⁷Fe line at 14.4 keV parametrised by g_{an}^{eff} .

Detection in XENON1T is considered via the axio-electric effect proportional to g_{ae}^2 .

New physics? – Solar Axions

Detection via the axio-electric effect

- Convolution with the detector resolution
- Efficiency corrections

New physics? – Solar Axions

4

1e-12

New physics? – μ_{ν}

- Large values of the neutrino magnetic moment would imply new physics.
- Majorana neutrinos are expected to have $\mu_{v} > 10^{-15} \mu_{B}$.
- Enhanced neutrino-electron elastic scattering cross section would occur.

Summarising

XENONnT upgrade

Neutron veto

- Inner region of
 existing muon veto
- optically separate
- 120 additional PMTs
- Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

Larger **TPC**

- Total 8.4 t LXe
- 5.9 t in TPC
- ~ 4 t fiducial
- 248 → 494 PMTs

ReStoX2

- Second Xe Recovery and Storage system
- Up to 10 t GXe capacity

222Rn distillation

- Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system
- New system

LXC purification

- Faster xenon cleaning
- 5 L/min LXe (2500 slpm)
- XENON1T ~ 100 slpm

ER dominating background at low energy

ER dominating background at low energy

In the low energy region, which is of interest for WIMP searches, the leaking of electron recoil events into the nuclear recoil region is dominated by ⁸⁵Kr and ²²²Rn.

 $10^{3} \xrightarrow{214}{\text{Pb}} \xrightarrow{136}{\text{Xe}} \xrightarrow{125}{\text{I}}$ $10^{3} \xrightarrow{85}{\text{Kr}} \xrightarrow{131}{\text{Materials}} \xrightarrow{83}{\text{MKr}} \xrightarrow{124}{\text{Total}}$ $10^{3} \xrightarrow{133}{\text{Xe}} \xrightarrow{124}{\text{Xe}}$ $10^{2} \xrightarrow{10^{4}}{\text{I}}$ $10^{2} \xrightarrow{10^{4}}{\text{C}}$ $10^{2} \xrightarrow{10^{4}}{\text{C}}$ $10^{2} \xrightarrow{10^{4}}{\text{C}}$ $10^{2} \xrightarrow{10^{4}}{\text{C}}$ $10^{2} \xrightarrow{124}{\text{Xe}}$ $10^{1} \xrightarrow{10^{4}}{\text{C}}$ $10^{1} \xrightarrow{1$

By improving the ²²²Rn elimination via upgraded cryogenic distillation, the the NR background, now dominated by the leaking of ER events to the NR band, will be dominated by radiogenic neutrons

NEUTRON VETO

XENONnT

- Active mass: ≈ 6 tonne active
- Muon veto: $\approx 650 \text{ m}^3 \text{ water} + \text{Gd}$
- Neutron veto: $\approx 50 \text{ m}^3 \text{ water} + \text{Gd}$

With respect to XENON1T

Guido Zavattini, Birmingham Particle Physics group, October 21st 2020

Neutron Veto

- The Xenon TPC is surrounded by a double layer of water + Gadolinium
- The presence of the Gadolinium is to capture thermalised neutrons which have exited the central detector
- Internal layer is enclosed by white diffusing reflector. Cherenkov Light generated by a neutron capture in the Gadolinium is read by 120 dedicated PMTs.
- External layer composes the Muon Veto detector. Muons generate light via the Cherenkov effect.

XENONnT perspective

Guido Zavattini, Birmingham Particle Physics group, October 21st 2020

37

Arrival of the TPC inside the LNGS gallery

5 March 2020: TPC completed and transported underground (8 March 2020: COVID19 national lock-down)

16 March 2020: closed the cryostat

Installation of the neutron veto

From August (started 27 July) installation of the nVeto and its integration with the calibration system.

Inside the water tank looking up into the neutron veto without the floor. At the centre cryostat.

Installation of the neutron veto

Inside the neutron veto Last touches: roof, sides and cryostat cover almost complete

Inside the water tank

View from below showing the bottom pannels of the nVeto

XENONnT

Thank you!

Fit with data

Excess of events between [1-7] keV_{ee}

- 285 observed events
- 232±15 expected events from the best fit
- Would represent a 3.5σ fluctuation

³⁷Ar contamination?

- Air leak in XENON1T < 1 liter/year (rare gas mass spectrometry constraints)
- Corresponds to $< 5 \text{ ev}/(t \cdot y)$ in the ER band
- To explain the excess ER events one needs 65 ev/(t·y)

And

- ³⁷Ar gives monoenergetic line at 2.82 keV_{ee}
- Best mono-energetic line fit at 2.3±0.2 keV_{ee}
- Energy reconstruction in this energy range is validated with ³⁷Ar calibration

3.0

8

New Physics? Bosonic Dark Matter

Fitting a monoenergetic peak to the ER escess events

New Physics? Bosonic Dark Matter

