Whither † SUSY?

G. Ross, Birmingham, January 2013

† whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwaeder; related to Gothic hvadre; modern English form influenced by HITHER]

Low energy

Λ

SUSY - to what end or purpose?

Unification:

SU(5), SO(10),...

1

The hierarchy problem: $M_{Higgs}, M_{W,Z} \ll M_{Planck}, M_{GUT}, \dots$ (?)

ATLAS

MSUCPA/CMSS	M: 0 lop + i's + F					
MSUCRA/CMSS	$SM: 1 \log + i \circ + E$	L=4.7 fb , 7 lev [ATLAS-CONF-2012-033]	1.40	a – a mass	ſ	
$MSUGRA/CMSSM : 1 \text{ lep + } J'S + E_{T,miss}$ $MSUGRA/CMSSM : 0 \text{ lep + multijets + } E_{T,miss}$ $MSUGRA/CMSSM : 0 \text{ lep + multijets + } E_{T,miss}$		L=4.7 fb , 7 lev [ATLAS-CONF-2012-041]	1.20 TeV	q - g mass	Ldt = (0.0)	3 - 4.8) fb ⁻¹
		L=4.7 fb ⁻ , 7 TeV [1206.1760]	840 Gev gri	nass (large m _o)	J	
Pheno model : $0 \text{ lep } + j^{*}s + E_{T,\text{miss}}$		L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-033]	1.38 1	ev q mass (m(g) < 2 TeV,	light X ₁)	19 - 1 164
6 Ohilas mod 2 [±] (2 + 2 [±])	del : 0 lep + JS + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-033]	940 GeV g	mass $(m(q) < 2 \text{ TeV}, \text{ light } \chi_1)$	10	24 174
$\frac{g}{2}$ Gluino med. $\chi^{-}(g \rightarrow qq)$	χ): 1 lep + j's + $E_{T,miss}$	L=4.7 fb", 7 TeV [ATLAS-CONF-2012-041]	900 GeV g	mass $(m(\chi_1) < 200 \text{ GeV}, m(\chi_1)$	$f = \frac{1}{2}(m(\chi) + m(g))$	Broliminan
GMSE GMSE	$3:2 \text{ lep OSSF} + E_{T,\text{miss}}$	L=1.0 fb ⁻¹ , 7 TeV [ATLAS-CONF-2011-156]	810 GeV g m	Iass (tan β < 35)		Freiminary
	MOD: $1-t+jS+E$	L=2.1 fb ⁻¹ , 7 TeV [1204.3852]	920 GeV g	mass $(tan\beta > 20)$		
G	$MOD: 2-\tau + JS + E$	L=2.1 fb ⁻¹ , 7 TeV [1203.6580]	990 GeV			I
	$GGIVI: \gamma\gamma + E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV	1 tan ta 1 T	'- \ / -+	
g→bbχ_ (virtual b) : 0	lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV	LIMITII	ev str	ond
ຊີອີ g→bbχ̃ (virtual b):	0 lep + 3 b-j's + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.02 TeV			5
g jig g→bb χ (real b):	0 lep + 3 b-j's + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	1.00 TeV	!		
∞ ğ g→tt̄χ̃ (virtual t) : 1	lep + 1/2 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	710 GeV g m	Interacti	ng	
6 δ g→tt x̃ (virtual t): 2	$2 \text{ lep (SS)} + j' s + E_{T, \text{miss}}$	L=2.1 fb ⁻¹ , 7 TeV [1203.5763]	650 GeV g ma		U	
S g→ttx (virtual t): 0) lep + multi-j's + E _{T.miss}	L=4.7 fb ⁻¹ , 7 TeV [1206.1760]	870 GeV			
ຕັີດ g̃→tītī (virtual t̃):	0 lep + 3 b-j's + E7, miss	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	940 GeV	particles	5	
<u>ğ</u> , g_, tt̃ χ̃ (real t̃) :	0 lep + 3 b-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058]	_ 820 GeV ĝ			
	lep + 2-b-jets + E _{7,miss}	L=2.1 fb ⁻¹ , 7 TeV [1112.3832]	390 Gev b mass (m(x)	0 GeV)		
tt (very light)	$t \rightarrow b \tilde{\chi}_{t}^{\pm}$: 2 lep + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV t r	mass $(m(\chi)) = 45 \text{ GeV})$			
ਤੋੜੋ tt (light), t→bχ̃ [±] :	1/2 lep + b-jet + ET miss	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-070] 120-173 GeV	t mass $(m(\bar{\chi}_{1}^{-0}) = 45 \text{ GeV})$			
S tt (heavy), t→tz	: 0 lep + b-jet + ET miss	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-074]	380-465 Gev t mass (n	= 0)		
B to tt (heavy), t→tz	: 1 lep + b-jet + ET miss	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-073]	230-440 Gev t mass (m)	= 0)		
$\underline{\mathfrak{g}}$ $\underline{\mathfrak{g}}$ $\underline{\mathfrak{t}}$ (heavy), $\underline{\mathfrak{t}} \rightarrow t \overline{\chi}$: 2 lep + b-jet + ET miss	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-071] 29	8-305 GeV \widetilde{t} mass $(m(\chi^0) = 0)$			
tt (GMSB)	$Z(\rightarrow II) + b - jet + E$	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	310 Gev t mass (115 < m(j	230 GeV)		
	$1, \tilde{I} \rightarrow \tilde{\chi}_{1}^{0}$: 2 lep + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076] 93-180 GeV	I mass $(m(\overline{\chi}^0) = 0)$			
$ = \widetilde{\chi}_{i}^{\dagger} \widetilde{\chi}_{i}, \widetilde{\chi}_{i}^{\dagger} \rightarrow \widetilde{Iv} (\widetilde{W} $	$\tilde{\gamma} \rightarrow v \tilde{\chi}_{\tau}^{0} : 2 \text{ lep } + E_{\tau \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-076]	20-33			
$\tilde{\chi}_{\chi_{0}}^{\pm 10} \rightarrow 3l(hv)$ +	$+v+2\overline{\chi}^{0}$: 3 lep + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-077]		~ 100		
-1-2	AMSB : long-lived 2	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-034]118 GeV $\tilde{\chi}_{\star}^{\pm}$ [ass Limit 30	JU-400 G	7ev	
Stable g R-I	hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]				
Stable b R-	hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]				
Stable T R-	hadrons : Full detector	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	stop po	Inticles		
A Metastable g R-ha	adrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]				
5	GMSB : stable ₹	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-075]	310 τ̃ mass (5 < tanβ)		
 	RPV : high-mass eµ	L=1.1 fb ⁻¹ , 7 TeV [1109.3089]	1.32		=0.05)	
🔬 🛛 Bilinear RF	PV : 1 lep + j's + $E_{T miss}$	L=1.0 fb ⁻¹ , 7 TeV [1109.6606]	760 GeV q =	Mass (ct.sp < 15 mm)		
BC	C1 RPV : 4 lep + E _{7,miss}	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035]		7 TeV g mass		
Hypercolour scalar	gluons : 4 jets, m _{ii} ≃ m _{kl}	L=34 pb ⁻¹ , 7 TeV [1110.2693] 100-185 GeV	S n mass (not excluded	a= 140± 3 GeV)		
Spin dep. WIMP interaction : monojet + E _{T.miss}		L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	709 GeV M*	(m _x < 100 GeV, vector D5,	Dirac χ)	
O Spin indep. WIMP interaction	ction : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-084]	548 Gev M* scale	(m _x < 100 GeV, tensor D9, Dira	ac χ)	
_		40-1			10	
*Only a selection of the avail And limits on WEAK INTERACTIONS Mass scale [TeV]						cale [TeV]

SUSY - to what place?

Little hierarchy problem MSSM: 105 +(19) Parameters

Λ

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

SUSY - to what place?breakingLittle hierarchy problem \Rightarrow definite SUSY structureMSSM:105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} \widetilde{M}_{i}^{2} + \dots$$
$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}_{i}^{2}}{M_{Z}^{2}} \sim 100$$

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

 $\Delta_q = 100, \quad \delta \chi^2 \sim 9, \quad \delta \chi^2 / d.o.f. \sim 1$

Outline

- I. The CMSSM Scalar focus point
- II. Reduced fine tuning

(G)NMSSM

Gaugino focus point

Natural SUSY

R-parity breaking

Supersoft SUSY breaking

Compressed spectrum

III. Implications of 125 GeV Higgs

Couplings and masses evaluated to two loop (leading log) order

...enhanced sensitivity due to small tree-level $\lambda = \frac{1}{8} (g_1^2 + g_2^2) \cos^2 2\beta$

Cassel, Ghilencea, GGR c.f. earlier work : Dimopoulos, Giudice Chankowski, Ellis, Olechowski, Pokorski

Pre-LHC

Relic density restricted

- $1 \quad h^0$ resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $ilde{ au}$ co-annihilation
- 4 \tilde{t} co-annihilation
- 5 A^0 / H^0 resonant annihilation

*W*ithin 3σ WMAP:

 $\Delta_{Min} = 15, \quad m_h = 114.7 \pm 2GeV$

< 3σ WMAP: $\Delta_{Min} = 18$, $m_h = 115.9 \pm 2GeV$

Cassel, Ghilencea, GGR

 λ increases with m_{H}

Limit of RGE focus point -natural cancellation of terms for

 $m_{H_U}(M_X) = m_{\tilde{t}_R}(M_X) = m_{\tilde{t}_L}(M_X) = m_0$

$$m_{H_{u}}^{2}\left(Q^{2}\right) = m_{H_{u}}^{2}\left(M_{p}^{2}\right) + \frac{1}{2}\left(m_{H_{u}}^{2}\left(M_{p}^{2}\right) + m_{Q_{3}}^{2}\left(M_{p}^{2}\right) + m_{\bar{u}_{3}}^{2}\left(M_{p}^{2}\right)\right)\left[\left(\frac{Q^{2}}{M_{p}^{2}}\right)^{\frac{3y_{t}^{2}}{4\pi^{2}}} - 1\right]$$

Direct SUSY searches:

Relic density restricted

- 1 h^0 resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $ilde{ au}$ co-annihilation
- 4 t co-annihilation
- 5 A^0 / H^0 resonant annihilation

*W*ithin 3σ WMAP:

 $\Delta_{Min} = 15, \quad m_h = 114.7 \pm 2GeV$

 $< 3\sigma$ WMAP:

 $\Delta_{\rm Min} = 18, \quad m_{\rm h} = 115.9 \pm 2 GeV$

Direct SUSY searches:

Relic density restricted

- 1 h^0 resonant annihilation
- 2 \tilde{h} t-channel exchange
- 3 $ilde{ au}$ co-annihilation
- 4 t co-annihilation
- 5 A^0 / H^0 resonant annihilation

Within 3σ WMAP:

 $\Delta_{Min} = 15, \quad m_h = 114.7 \pm 2GeV$

 $< 3\sigma$ WMAP:

 $\Delta_{\rm Min} = 18, \quad m_{\rm h} = 115.9 \pm 2 GeV$

Significant Higgsino LSP component -now excluded by XENON 100

CMSSM summary:

• Minimises MSSM fine tuning (focus point) (c.f. gauge mediation $\Delta >> \Delta_{CMSSM}$)

 $Max[\Delta_{EW}, \Delta_{\Omega}] = 15(29), \quad m_h = 114(116) \pm 2GeV$

Complementary DM & LHC searches

• **BUT** $\Delta > 300$ for $m_H = 126 GeV$

(If give up on unification of soft parameters fine tuning reduced by factor ~ 10)

II. Reduced fine tuning :

...more correlations between parameters...later

...beyond the MSSM

e.g. singlet extensions - the NMSSM

 $W = W_{\text{Yukawa}} + \lambda S H_u H_d + \frac{\kappa}{3} S^3$

Additional quartic interaction $\delta V = \left| \lambda H_u H_d \right|^2$

Fine tuning in the NMSSM $(\lambda \leq 0.7^{\dagger})$

5 p. 10⁻¹

10-12

10⁻¹³

* Best fit

 $BR(B_s \rightarrow \mu^+ \mu^-)_{EXP}$

XENON100 σ_n^{SI} (min

XENON1T $\sigma_n^{SI}(min)$

 $BR(B_s\!\rightarrow\!\mu^+\,\mu^-\,)$

(a)

Kowalska, Munir, Roszkowski, Sessolo, Trojanowski, Tsai

5 P. 10⁻¹

10

10-1 +

Posterior pdf, log priors

 $BR(B_s \rightarrow \mu^+ \mu^-)_{EXP}$

XENON1T $\sigma_n^{SI}(min)$

 $BR(B_s \rightarrow \mu^+ \mu^-)$ (b)

10

XENON100 $\sigma_n^{SI}(min)$

LHC (5/fb)

Best fit

 m_h

+ dim 5 operators

Cassel, Ghilencea, GGR Casas, Espinosa, Hidalgo Dine, Seiberg, Thomas Batra, Delgardo, Tait Kaplan,

...effect mainly comes from $\zeta_1 |h_1|^2 h_1 h_2$ term ... origin?

 m_h

MSSM

Reduced fine tuning : singlet extensions

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSM}$$

c.f.
$$W = W_{\text{Yukawa}} + \lambda SH_uH_d + \frac{\kappa}{3}S^3$$
 NMSSM

$$\mu_{S} \gg m_{3/2}$$

$$W_{eff}^{GNMSSM} = \left(H_{u}H_{d}\right)^{2} / \mu_{s} + \mu H_{u}H_{d}$$

$$\frac{\mu}{\mu_{s}} \left(\left|H_{u}\right|^{2} + \left|H_{d}\right|^{2}\right) H_{u}H_{d} \qquad \sqrt{2} = -\frac{m^{2}}{\lambda}$$

Reduced fine tuning mainly for GNMSSM

applied

applied

GGR, Schmidt-Hoberg , Staub

$$\mathsf{GNMSSM} \qquad W = W_{\mathrm{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S$$

R-symmetry ensures Singlet extensions natural

Dark Matter structure

GENERAL-NMSSM PHENOMENOLOGY

Higgs structure (h_u, h_d, s)

• $\mu_s \gg \mu$ MSSM SUSY structure with heavy Higgs

• $\mu_s, m_s, b_s \sim \mu$ $h_1 \simeq H_{u,d} + \varepsilon S, \quad h_2 = S - \varepsilon H_{u,d}$

 $\dots h_2$ may be lighter than LEP bound

 m_{h_1} v/s Δ for the case $m_{h_2} < m_{h_1}$

GENERAL-NMSSM PHENOMENOLOGY

Higgs structure (h_u, h_d, s)

• $\mu_s \gg \mu$ MSSM SUSY structure with heavy Higgs

• $\mu_s, m_s, b_s \sim \mu$ $h_1 \simeq H_{u,d} + \varepsilon S, \quad h_2 = S - \varepsilon H_{u,d}$

 $\dots h_2$ may be lighter than LEP bound $\dots h_1$ may have enhanced $\gamma\gamma$ rate

Schmidt-Hoberg, Staub

GENERAL-NMSSM PHENOMENOLOGY

Higgs structure (h_u, h_d, s)

• $\mu_s \gg \mu$ MSSM SUSY structure with heavy Higgs

• $\mu_s, m_s, b_s \sim \mu$ $h_1 \simeq H_{u,d} + \varepsilon S, \quad h_2 = S - \varepsilon H_{u,d}$

 $\ldots h_2$ may be lighter than LEP bound

 $\dots h_1$ may have enhanced $\gamma\gamma$ rate

 $\dots h_1$ may have enhanced LSP annihilation rate to photons..?

$$\langle \sigma v \rangle_{\gamma\gamma} \simeq (6 \cdot 10^{-28} \text{ cm}^3 \text{ s}^{-1}) \cdot \lambda^2 \kappa^2 \left(\frac{(100 \text{ GeV})^2}{4 m_{\tilde{\chi}_1^0}^2 - m_{A_1}^2} \right)^2 \left(\frac{m_{\tilde{\chi}_1^0}}{130 \text{ GeV}} \right)^2$$

Fermi 135GeV line : $\lambda, \kappa \leq 1$, $m_{A_1} \simeq 240 - 280 GeV$

Schmidt-Hoberg, Staub, Winkler

Input				
$\tan\beta$	1.2	$v_s \; [\text{GeV}]$	-4.0	
λ	0.74	$A_{\lambda} [\text{GeV}]$	0	
κ	1.4	$A_{\kappa} [\text{GeV}]$	0	
$\mu_s \; [\text{GeV}]$	103.0	$b_s [\text{GeV}^2]$	$3.356\cdot 10^5$	
μ [GeV]	208.0	$b\mu \; [\text{GeV}^2]$	$2.4\cdot 10^5$	
$M_1 \; [\text{GeV}]$	1500.0	M_2 [GeV]	193.0	
$M_3 \; [\text{GeV}]$	1500.0	m_{scalar} [GeV]	1500.0	
$A_{top}Y_{top}$ [GeV]	1500.0	$\xi_S \; [\text{GeV}^3]$	0.0	
	CP even H	iggs sector		
$m_{h_1} \; [\text{GeV}]$	125.7	down fraction h_1	41.5%	
m_{h_2} [GeV]	690.1	up fraction h_1	57.8%	
m_{h_3} [GeV]	786.8	singlet fraction h_1	0.7%	
	CP odd H	iggs sector		
$m_{A_1} \; [\text{GeV}]$	247.5	singlet fraction A_1	99.9%	
$m_{A_2} \; [\text{GeV}]$	691.9	up and down fraction A_1	0.1%	
	Neutralii	no sector		
$\tilde{\chi}_1^0 \; [\text{GeV}]$	130.0	bino fraction $\tilde{\chi}_1^0$	$<\!0.1\%$	
$\tilde{\chi}_2^0 \; [\text{GeV}]$	156.4	wino fraction $\tilde{\chi}_1^0$	5.1%	
$\tilde{\chi}_3^0$ [GeV]	316.2	down-higgsino fraction $\tilde{\chi}_1^0$	0.3%	
$\tilde{\chi}_4^0$ [GeV]	331.6	up-higgsino fraction $\tilde{\chi}_1^0$	10.0%	
$\tilde{\chi}_5^0$ [GeV]	1497.4	singlet fraction $\tilde{\chi}_1^0$	84.5%	
Chargino sector				
$\tilde{\chi}_1^+$ [GeV]	<u>154.</u> 8	wino fraction $\tilde{\chi}_1^+$	70.6%	
$\tilde{\chi}_2^+$ [GeV]	332.6	higgsino fraction $\tilde{\chi}_1^+$	29.4%	
Electroweak observables				
$R_{\gamma\gamma}$	1.2	$R_{b\bar{b}}$	1.0	
R_{ZZ}	1.0	$R_{ auar{ au}}$	1.0	
$\operatorname{Br}(b \to s\gamma)$	$3.4\cdot10^{-4}$	$\operatorname{Br}(B_s \to \mu \mu)$	$3.7 \cdot 10^{-9}$	
Δa_{μ}	$-1.2 \cdot 10^{-11}$	δho	$4.5 \cdot 10^{-5}$	
Dark matter				
Ωh^2	0.1	X_{FO}	24.9	
$\sigma_p^{\rm SI} [{\rm cm}^2]$	$2.2 \cdot 10^{-45}$	$\sigma_p^{\rm SD} [\rm cm^2]$	$3.8\cdot10^{-40}$	
$\langle \sigma v \rangle_{\gamma\gamma} [\mathrm{cm}^3/\mathrm{s}]$	$0.83 \cdot 10^{-27}$	$\langle \sigma v \rangle_{\gamma Z} [\mathrm{cm}^3/\mathrm{s}]$	$0.79 \cdot 10^{-27}$	

GNMSSM benchmark point

Input				
$\tan \beta$	1.2	$v_s \; [\text{GeV}]$	-4.0	
λ	0.74	$A_{\lambda} [\text{GeV}]$	0	
κ	1.4	A_{κ} [GeV]	0	
$\mu_s \; [\text{GeV}]$	103.0	$b_s [{ m GeV}^2]$	$3.356\cdot 10^5$	
$\mu [\text{GeV}]$	208.0	$b\mu [\text{GeV}^2]$	$2.4 \cdot 10^5$	
M_1 [GeV]	1500.0	M_2 [GeV]	193.0	
$M_3 \; [\text{GeV}]$	1500.0	m_{scalar} [GeV]	1500.0	
$A_{top}Y_{top}$ [GeV]	1500.0	$\xi_S \; [\text{GeV}^3]$	0.0	
CP even Higgs sector				
$m_{h_1} [\text{GeV}]$	125.7	down fraction h_1	41.5%	
$m_{h_2} \; [\text{GeV}]$	690.1	up fraction h_1	57.8%	
$m_{h_3} \; [\text{GeV}]$	786.8	singlet fraction h_1	0.7%	
	CP odd H	iggs sector		
$m_{A_1} [\text{GeV}]$	247.5	singlet fraction A_1	99.9%	
m_{A_2} [GeV]	691.9	up and down fraction A_1	0.1%	
	Neutralin	no sector		
$\tilde{\chi}_1^0 \; [\text{GeV}]$	130.0	bino fraction $\tilde{\chi}_1^0$	< 0.1%	
$\tilde{\chi}_2^0 \; [\text{GeV}]$	156.4	wino fraction $\tilde{\chi}_1^0$	5.1%	
$\tilde{\chi}_3^0 \; [\text{GeV}]$	316.2	down-higgsino fraction $\tilde{\chi}_1^0$	0.3%	
$\tilde{\chi}_4^0 \; [\text{GeV}]$	331.6	up-higgsino fraction $\tilde{\chi}_1^0$	10.0%	
$\tilde{\chi}_5^0 \; [\text{GeV}]$	1497.4	singlet fraction $\tilde{\chi}_1^0$	84.5%	
Chargino sector				
$\tilde{\chi}_1^+$ [GeV]	<u>154.</u> 8	wino fraction $\tilde{\chi}_1^+$	70.6%	
$\tilde{\chi}_2^+$ [GeV]	332.6	higgsino fraction $\tilde{\chi}_1^+$	29.4%	
Electroweak observables				
$R_{\gamma\gamma}$	1.2	$R_{b\bar{b}}$	1.0	
R_{ZZ}	1.0	$R_{\tau\bar{\tau}}$	1.0	
$Br(b \to s\gamma)$	$3.4\cdot10^{-4}$	$\operatorname{Br}(B_s \to \mu \mu)$	$3.7 \cdot 10^{-9}$	
Δa_{μ}	$-1.2 \cdot 10^{-11}$	δho	$4.5\cdot10^{-5}$	
Dark matter				
Ωh^2	0.1	X_{FO}	24.9	
$\sigma_p^{\rm SI} [{\rm cm}^2]$	$2.2\cdot 10^{-45}$	$\sigma_p^{\rm SD} [\rm cm^2]$	$3.8\cdot10^{-40}$	
$\langle \sigma v \rangle_{\gamma\gamma} [\mathrm{cm}^3/\mathrm{s}]$	$0.83 \cdot 10^{-27}$	$\langle \sigma v \rangle_{\gamma Z} [\mathrm{cm}^3/\mathrm{s}]$	$0.79 \cdot 10^{-27}$	

GNMSSM benchmark point

Reduced fine tuning : nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $M_3: M_2: M_1 = \eta_3: 1: \eta_1$

Reduced fine tuning: nonuniversal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\bar{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

 $2.7n \cdot 1 \cdot 0.5n$

Natural ratios? e.g.:

GUT: $SU(5): \Phi^{N} \subset (24 \times 24)_{symm} = 1 + 24 + 75 + 200; SO(10): (45 \times 45)_{symm} = 1 + 54 + 210 + 770$

	$\mathbf{r}_3 \cdot \mathbf{r} \cdot \mathbf{r}_1$	
Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

 $n \cdot 1 \cdot n$

String:
$$(3+\delta_{GS}):(-1+\delta_{GS}):(-\frac{33}{5}+\delta_{GS})$$

(OII, also mixed moduli anomaly)

Gaugino focus point - Phenomenology

• Gaugino mass ratios

$$\frac{M_i(Q)}{M_{1/2}} = \eta_i \frac{\alpha_i(Q)}{\alpha_i(M_X)} \quad \Rightarrow \begin{array}{l} \frac{M_1(Q)}{M_2(Q)} \approx 0.5\eta_1 \\ \Rightarrow M_2(Q) \approx 0.8M_{1/2} \\ \frac{M_3(Q)}{M_2(Q)} \approx 2.7\eta_3 \end{array}$$

.... gauginos can be very heavy

• Light neutralino and 2 charginos nearly degenerate

$$\begin{split} m_{\chi_2^0} &- m_{\chi_1^0} = M_Z^2 \left(\frac{s_W^2}{M_1} + \frac{c_W^2}{M_2} \right) + \mathcal{O}(\frac{M_Z^3}{M_2^2}) \\ m_{\chi_1^\pm} &- m_{\chi_1^0} = \frac{1}{2} M_Z^2 \left(\frac{s_W^2}{M_1} + \frac{c_W^2}{M_2} \right) + \frac{1}{2} M_Z^2 \left(\frac{s_W^2}{M_1} - \frac{c_W^2}{M_2} \right) \epsilon \sin 2\beta + \mathcal{O}(\frac{M_Z^3}{M_2^2}) \end{split}$$

+ for $|M_1| < \mu$, Bino or Higgsino LSP candidate

• CMSSM (and other MSSMs) highly fine tuned

- CMSSM (and other MSSMs) highly fine tuned
- BCMSSM: more correlations or BMSSM

-(G) NMSSM Reduced $\Delta \implies GNMSSM \implies Z_{4R}, Z_{8R}$ SUSY states can be (slightly)heavier $m_h \rightarrow 130 GeV$

LHC bounds already severe with conventional cosmology

- CMSSM (and other MSSMs) highly fine tuned
- BCMSSM: more correlations or BMSSM

-GNMSSM + gaugino focus point; SUSY states heavier Still room for natural SUSY!

• Indirect hints....g-2, $h \rightarrow \gamma \gamma$, Fermi

Muon g-2

$$a_{\mu}^{theory} - a_{\mu}^{expt} = -(28.7 \pm 8.0) \times 10^{-10}$$
Theory error from hadronic contribution:

$$\delta a_{\mu}^{e^+e^-} = 3.6 \sigma$$

$$\delta a_{\mu}^{\tau} = 2.4 \sigma$$

$$SUSY$$

$$\delta a_{\mu}^{sUSY} = -13 \times 10^{-10} \left(\frac{100 \, GeV}{M_{SUSY}}\right)^2 \tan \beta$$

$$M^{09} (e^+e^-based)$$

$$BNLEB21 (world average)$$

$$(a_{\mu}^{harry} - a_{\mu}^{expt}) \times 10^{-11}$$

$$\gamma = -13 \times 10^{-10} \left(\frac{100 \, GeV}{M_{SUSY}}\right)^2 \tan \beta$$

Needs light sleptons - anomaly/mirage spectrum?

With slepton universality - $h \rightarrow \gamma \gamma$ plausibly correct!

- CMSSM (and other MSSMs) highly fine tuned
- BCMSSM: more correlations or BMSSM

-GNMSSM + gaugino focus point; SUSY states heavier Still room for natural SUSY!

- Indirect hints....g-2, $h \rightarrow \gamma \gamma$, Fermi
- Hidden SUSY

Natural SUSY R-parity breaking Supersoft SUSY breaking Compressed spectrum

- CMSSM (and other MSSMs) highly fine tuned
- BCMSSM: more correlations or BMSSM

-GNMSSM + gaugino focus point; SUSY states heavier Still room for natural SUSY!

- Indirect hints....g-2, $h \rightarrow \gamma \gamma$, Fermi
- Hidden SUSY
- Intriguing implications of 125GeV pure SM Higgs IRFP?, Higgs inflation?...

Implications of 125 GeV Higgs - vacuum instability

$$V(H) = -\frac{1}{2}M_{H}^{2}|H|^{2} + \frac{\lambda}{4}|H|^{4}$$

Tunneling probability:
$$p = \max_{R} \frac{V_U}{R^4} \exp\left[-\frac{8\pi^2}{3|\lambda(\mu)|} - \Delta S\right]$$

Isidori, Ridolfi, Strumia

$$\begin{split} M_h \; [\text{GeV}] > 129.4 + 1.4 \left(\frac{M_t \; [\text{GeV}] - 173.1}{0.7} \right) &- 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 1.0_{\text{th}} \\ M_h > 129.4 \pm 1.8 \; \text{GeV}, \qquad \qquad 2\sigma \; \text{ away from stability} \end{split}$$

III. Implications of 125 GeV Higgs

Higgs coupling small

RGE - just the Standard Model

Hambye, Riesselmann