Carbon Nanostructures for Directional Light Dark Matter Detection

Francesco Pandolfi

INFN Rome

University of Birmingham 20.01.2021

Istituto Nazionale di Fisica Nucleare

85% of the Matter of the Universe Unaccounted For

Francesco Pandolfi

The Rise of the ACDM Model

- In ΛCDM, dark matter is:
 - Massive
 - Electrically neutral
 - Not self-interacting ('cold')
 - Gravitationally interacting with ordinary magnetized
- ♦ Primordial fluctuations in DM density → viria
 - 'Seeds' for galaxies

On Earth: DM 'wind' from Cygnus constellation

Non-relativistic speed (v_{DM} ~ 10⁻³ c)

Francesco Pandolfi

Carbon Nanostructure

		Ω	Ω·h²
	Atoms	0.048	0.022
	Dark Matter	0.26	0.12
	Dark Energy	0.69	
atter			
al wells	*		
M. M.			
SN C	ygnus .		SI
	DN	l 'Wind'	>
es for Dark Matter, 20.01.	21		

The WIMP and Its 'Miracle'

• For correct relic abundance $\Omega_d \sim 0.12$ after 'freeze-out', one needs: $\langle \sigma v \rangle \sim 1$ pb

In **WIMP** paradigm dark matter is: *

- Massive (M ~ 100 GeV)
- Electrically neutral
- Not self-interacting ('cold')
- Gravitationally interacting with ordinary matter

Weakly interacting with ordinary matter

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

• Which is exactly what one gets for a 100 GeV particle with electroweak couplings

... Yet We Didn't Find the WIMP

Francesco Pandolfi

Problems with ACDM at Sub-Galactic Scale

- ACDM extremely successful in describing Universe at large scales
 - From horizon (15000 Mpc) to inter-galaxy distance (1Mpc)
- Problems arise when describing structures at sub-galactic scale (< 1Mpc)</p>
 - Cusp/core
 - Missing satellites
 - Too-Big-to-Fail

Francesco Pandolfi

Problems with ACDM at Sub-Galactic Scale

- ACDM extremely **successful** in describing Universe at **large** scales *
 - From horizon (15000 Mpc) to inter-galaxy distance (1Mpc)
- **Problems** arise when describing structures at **sub-galactic** scale (< 1Mpc) *

- Missing satellites
- Too-Big-to-Fail

Francesco Pandolfi

Not covering these two, for comprehensive review see arXiv:1707.04256

The Cusp/Core Problem

- Cold DM creates halos with **high** central density *
 - Density profile predicted to be 'cuspy': increases steadily at smaller radii ($\rho \sim 1/r$)

Fails to describe rotation curves at low r

Data supports flatter DM density profile ('core') $\Upsilon V = (r)^2 \pm V = (r)^2$ $V_{halo}(r) = \sqrt{GM_{halo}(r)/r}$ Υ_*

The SIMP Paradigm (in a Nutshell) Hochberg et al., PRL 113 (2014) 17130⁻

- Strongly Interacting Massive Particles (SIMP) *
 - Self-interacting DM through $3 \rightarrow 2$ process
- Self-interaction heats up DM \rightarrow lowers density *
 - **Solves** CUSP/COPE (and too-big-to-fail)
- SIMP predicts **sub-GeV** DM
 - $m_{DM} \sim \alpha_{eff} (T^2 M_{PI})^{1/3}$ $(eg \alpha_{eff} = 1 \rightarrow m_{DM} = 100 \text{ MeV})$
 - a_{eff} constraints: not too **small** (wouldn't solve cusp/core) nor too large (wouldn't explain Bullet cluster)

Francesco Pandolfi

$3 \rightarrow 2$ scattering heats up DM

No more DM \rightarrow SM annihilation

Current Experiments Not Sensitive to SIMP Mass Range

For Light Dark Matter Better to Look For Electron Recoils

Directionality To (One Day) Pierce Neutrino Floor

Directionality: link a signal with region of the sky *

• DM 'wind' expected to come from **Cygnus** constellation

But **also** to be insensitive to neutrino floor

- Low mass neutrino floor mostly from solar neutrinos
- Cygnus never overlaps with Sun

Solid State Targets: The Advantage of 2D Materials

- **Back of the envelope** calculation: $K_{DM} = 5-50 \text{ eV}$ (for $m_{DM} = 10-100 \text{ MeV}$)
 - Assuming v_{DM} ~ 300 km/s
- **Enough** to extract an electron from carbon
 - Φ ~ 4.7 eV, so K_e ~ 1-50 eV
 - Extremely **short** range in matter!
- 2D materials: electrons ejected **directly** into vacuum *
 - Graphene and carbon nanotubes

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

Single-wall nanotube

Graphene

Multi-wall nanotube

12

Sharing R&D on Graphene with PTOLEMY

- PTOLEMY aims to measure Cosmic Neutrino Background
 - Tritiated graphene target (up to 0.5 kg, ~100 m²)
 - R&D on graphene **also** aimed towards DM
- Graphene arranged in Graphene-FETs (G-FET)
 - Source and drain connected by graphene nanoribbons
 - Quasi-1D material, width W < 50 nm
 - Electrical properties depend on W

Francesco Pandolfi

G-FET: Sensitive to Single Electrons

- - **Minimum** at neutrality point ullet
 - Semiconductor behavior \bullet
 - F. Schedin et al., Nat. Mater. 6 (2007) 652 **NO₂ molecules** Adsorption 30 Changes in ρ_{xy} (Ω) 20 1*e* Desorption -----200 400 *t* (S)
- **×10** variation at cryo temperatures At minimum: sensitive to single e⁻ Absorption or emission • Measurable jumps in resistivity Carbon Nanostructures for Dark Matter, 20.01.21

Conductance depends on gate voltage and temperature

Graphene-FETs as Directional Dark Matter Detectors

Hochberg, et al., PLB 772 (2017) 239

Francesco Pandolfi

Carbon Nanostructures for Dark

- Double-sided G-FET geometry, between two **electrodes** (V = -100 V)
 - To accelerate ejected electrons back towards graphene

- Ballistic drift: knowing E, Δx and Δt \rightarrow can fully reconstruct electron $\vec{v_{\rho}}$ v_e correlated to DM wind direction
 - Directionality

Progress on G-FETs: Reducing Conductance Spikes

Francesco Pandolfi

16

Conductance **spikes** in transport gap *

- Mostly due to charge **impurities** \bullet
- Coming from the Si/SiO₂ substrate ●

- **Isolating** graphene from SiO₂ substrate *
 - **Greatly** reduces charge inhomogeneities \bullet
 - **x10** already with only hBN layer

Growing Vertically Aligned Carbon Nanotubes in the Lab

- **Carbon nanotubes** synthesized through Chemical Vapor Deposition (CVD) • Internal diameter ~20 nm, length up to 300 μ m C_xH_y C_xH_y
- Single- or multi-wall depending on growth **technique** Substrate

- Result: vertically-aligned nanotube 'forests'
 - **'Hollow'** in the direction of the tubes
 - Electrons can **escape** if // tubes
 - Makes it an **ideal** light-DM target

Francesco Pandolfi

Raman Analysis: Nanotubes are Highly Anisotropic

G. D'Acunto, et al., Carbon 139 (2018) 768

Raman analysis: anelastic energy loss *

- Vibrational modes (G, 2D) of carbon
- D 'defect' peak **typical** of nanotubes (absent in graphene)

Francesco Pandolfi

After bombarding nanotubes with Ar+ ions *

- Lateral penetration < 15 μm

Nanotube Detector Concept: the 'dark-PMT'

'Dark-photocathode' of aligned nanotubes

- Ejected e⁻ accelerated by electric field
- Detected by solid state e⁻ counter

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

Dark-PMT features:

- Portable, cheap, and easy to produce
- Unaffected by thermal noise ($\Phi_e = 4.7 \text{ eV}$)
- Directional sensitivity

19

Two Arrays of dark-PMTs to Search for a Dark Matter Signal

- Two sets of detectors: pointing towards Cygnus, and in orthogonal direction
 - Search variable: N₁-N₂

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

In principle sensitive to eV electrons!

Sensitive Down to <u><u><u>Gammani</u></u>cles of 2 MeV!</u>

Optimizing the Two Sides of the dark-PMT

Francesco Pandolfi

Optimizing the Two Sides of the dark-PMT

Aligned carbon nanotubes

Optimize: length, density, single-wall vs multi-wall

Francesco Pandolfi

Optimizing the Two Sides of the dark-PMT

Aligned carbon nanotubes

Optimize: length, density, single-wall vs multi-wall

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

Silicon detector for keV electrons

Optimize: technology, geometry, distance

A State-of-the-Art CVD Chamber in Rome

Francesco Pandolfi

- Thanks to ATTRACT funding
 - To develop novel UV light detector made with carbon nanotubes
- Equipped with **Plasma-Enhanced** technology
 - Capable of single-wall nanotubes
- **Delivered** right before lockdown (March 2020) *
 - Commissioning finished in July 2020
 - **Operational** since August 2020

 	_	

First Successful Growths on Day One!

SEM image of August 4th growth (day one of operation)

Length 80-100 µm

SEM HV: 10.0 kV	WD: 24.96 mm		MIRA3 TESCAN
SEM MAG: 1.50 kx	Det: SE	100 µm	
		Sapienza U	niversity of Rome

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

- Successfully synthetized nanotubes on day one! *
 - Can take months to commission CVD
- Growing CNTs on a **number** of subtrates: *
 - Silicon
 - **Fused** silica
 - Basalt fibers
 - Borosilicate glass

Not quite, yet

24

Spanning the Nanotube Growth Process

Francesco Pandolfi

Nanotube Characterization at Roma Tre LASEC Labs

- Large UHV chamber at Roma Tre LASEC labs
 - Equipped with UPS, XPS, e⁻ energy loss analysis
- Performed UPS characterization of nanotubes
 - And compared them to amorphous carbon

Francesco Pandolfi

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20

Geometrical model with only **one** free parameter

Satisfying description of amorphous carbon spectrum

Enhanced Electron Emission by Nanotubes

- Using He (I+II) UV lamp *
 - hv = 21.2 eV and 40.8 eV
- Studied electron flux ratio F_{cnt}/F_{aC} *
 - vs angle γ between nanotube axis and UV light
 - Normalized so that $F_{cnt}/F_{aC} = 1 @ \gamma = 40^{\circ}$
 - CNT variation up to 10x larger than aC @ $\gamma = 90^{\circ}$
 - Further proof of **anisotropy** of nanotubes

Silicon Detectors for keV Electrons

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

s and SDDs

APD

- Benchmark: Avalanche Photo-Diodes
- Simple, cost-effective
 - Hamamatsu windowless APD

- Possible upgrade: Silicon Drift Detectors
 - Ultimate resolution
 - FBK (SDD) + PoliMi (electronics)

LASEC Labs Also Have State-of-the-Art e- Gun

Inside same UHV chamber as UPS

- Electron **energy**: 90 < E < 1000 eV
- Energy uncertainty < 0.05 eV
- Gun current as low as a few fA *
 - i.e. electrons at ~10 kHz (not bunched)
- Beam profile ~ 0.5 mm *
 - Completely **contained** on APD ($\emptyset = 3$ mm)

Francesco Pandolfi

APD Characterization

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

V Electrons

Dark-PMT Prototype 'Hyperion' Taking Data in Rome

Field Electron Emission from Nanotubes?

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

- Observed high I_{apd} at high ΔV and small d(CNT-APD)

Hyperion Prototype

Not Limited to Dark Matter!

Young but ambitious nanotube programme started in Rome

- 'NanoUV': UV light detectors based on carbon nanotubes
- 'NanoBio': nanotubes for biosensors
- Development of novel composite materials made with carbon nanotubes

Francesco Pandolfi

Conclusions

- **Carbon nanostructures:** exciting new possibilities for light dark matter searches
 - 2D materials: recoiling electrons ejected directly into vacuum
- Two detector concepts, both with **directional** sensitivity *
 - 'G-FET': made of graphene nanoribbons
 - 'Dark-PMT': made of aligned carbon nanotubes
- Lots of **exciting** R&D ongoing both in Princeton and Rome! *
 - Rome CVD chamber successfully synthesizing nanotubes since day one
 - Dark-PMT prototype 'Hyperion' currently being commissioned with APDs and SDDs

Francesco Pandolfi

Some of this work has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222

Full List of Contributors

• FP

- Gianluca Cavoto
- Carlo Mariani
- Ilaria Rago

Francesco Pandolfi

- Andi Tan
- Chris Tully
- Fang Zhao

- Alice Apponi
- Alessandro Ruocco

Additional Material

SDDs for High-Resolution Electron Spectroscopy

Francesco Pandolfi

SDD Integration in Hyperion with MIXED Module

- Collaboration with PoliMi (Prof. C. Fiorini)
 - Leading experts on SDDs
- Designed SDD module 'MIXED' * for integration in Hyperion prototype

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

MIXED: MIniaturized X-ray and Electron Detector M. Gugiatti, et al., Proc. IEEE ICECS 2020

Non-Aligned Top Layer: A Problem?

First Attempt with O₂ Plasma Etching Successful

Visually, seems like it worked

Francesco Pandolfi

Carbon Nanostructures for Dark Matter, 20.01.21

41

After O₂ etching

Will study effect on electron emission