

Depleted Monolithic Active Pixel Sensors (DMAPS)

<u>Eva Vilella</u>

University of Liverpool Department of Physics Oliver Lodge Laboratory Oxford Street Liverpool L69 7ZE

vilella@hep.ph.liv.ac.uk

2013

2014 to

2019

2019

LIVFRPC

Who am I?

PhD in Engineering and Advanced Technologies @ University of Barcelona

- Prototype detector for possible future linear colliders
- Application in medical devices

PDRA @ University of Liverpool

- New R&D programme to develop DMAPS for particle physics experiments
- Prototype detectors for ATLAS and Mu3e with international collaborations
- More generic developments with the CERN-**RD50** collaboration

UKRI Future Leaders Fellow @ University of Liverpool

- Established R&D programme to develop highly performant DMAPS for future particle physics experiments
- Group leader of the Liverpool DMAPS R&D programme
- Member of several international collaborations (CERN-RD50, LHCb, etc.)

Outline

- Silicon tracking detectors
 - Sensor detection principle
 - Readout electronics

Pixels

- Hybrids
- Monolithic Active Pixel Sensors MAPS
- Depleted Monolithic Active Pixel Sensors DMAPS
 - Commercial vendors
 - $\,\circ\,$ Low vs large fill-factor
- DMAPS for particle physics
 - Mu3e
 - ATLAS ITk upgrade
 - CERN-RD50
 - Main design aspects
 - Main evaluation results

Conclusion

Particle tracking

U

Silicon tracking detectors – Specifications

Dear Santa, Here is my wish	
Pixel size \rightarrow	small (a few μm²)
Radiation tolerance \rightarrow	high (> 10 ¹⁷ 1MeV n _{eq} /cm ²)
Time resolution \rightarrow	excellent (< 100 ps)
Material budget →	minimal (< 50 μm)
Power consumption \rightarrow	minimal (~10-100/cm²)
Noise →	minimal
Reticle size →	large
Assembly process \rightarrow	as easy as possible
Yield →	high (and cheap price!!!)
Lave, The physicists	

0 F

S

LIVERPOOL

E

UNIVERSITY OF LIVERPOOL

Silicon tracking detectors

- Silicon tracking detectors have been used in particle physics experiments since the early 80's
- They introduced a significant improvement of the spatial resolution in comparison to that provided by state-of-the-art detectors at the time:
 - Multi-wire proportional chambers (< 1 mm)
 - Drift chambers (~100 µm)
- Two main variants:
 - Micro-strips (~10 μm spatial resolution)
 - \circ 100 channels/cm²
 - **Pixels** (~10 μm spatial resolution)
 - o 5000 channels/cm²
 - True 3D reconstruction
 - Capable to cope with high density and rate particle tracks
 - Capable to survive harsh radiation environments
 - ➔ Close to the interaction point

CERN server

Sensor – Detection principle

- Silicon p-n diode in reverse bias
- A traversing particle creates e⁻/h⁺ pairs by ionization
- The electric field separates the e⁻/h⁺ pairs, which move to the detector electrodes where they generate signal
- Basic requirements:
 - Large bias voltage (V_{bias})
 - Larger W \rightarrow larger signal
 - Faster charge collection
 - Better radiation tolerance
 - High resistivity silicon bulk (ρ)
 - Backside biasing
 - More uniform electric field lines
 - Improved charge collection efficiency
- The signal is amplified, discriminated and digitized by the readout electronics

-
$$\rightarrow$$
 W = $\sqrt{\rho \cdot V_{bias}}$

Readout electronics – Block diagram

- Charge Sensitive Amplifier (CSA)
 - Signal charge integration
 - Pulse shaping (feedback capacitor with constant current)
- Comparator with DAC for local threshold voltage compensation
 - Pulse digitization
 - Length of digital pulse determined by time at which the rising and falling edges cross the comparator threshold voltage (Time over Threshold or ToT)
- RAM and ROM memories to store time-stamps and pixel address
- In deep sub-micron technologies for high density of integration

UNIVERSITY OF LIVERPOOL

Hybrid pixel detectors

- Sensor and readout electronics on separate wafers
- Best technology for the sensor and the readout electronics
 - Very fast charge collection by drift (1 ns)
 - Fully depleted bulk (large signal)
 - Radiation tolerant (10^{16} 1MeV n_{eq}/cm²)
 - Capability to cope with high data rates
- 1-to-1 connection between sensor and readout chip via tiny conductive bumps using bumping and flipchip technology
 - Limited pixel size (55 μ m x 55 μ m)
 - Substantial material thickness (300 μm)
 - Limited fabrication rate (bump-bonding and flip chipping is complex)
 - Expensive (> £1M/m²) custom wafers and processing
- State-of-the-art for high rate experiments

Hybrid pixel detectors in HEP

- ATLAS, CMS and ALICE use hybrid pixel detectors near the interaction point
- Complemented by hybrid strip detectors at larger radii
- Largest detector systems ever built in HEP (several m²)

Monolithic pixel detectors – MAPS

- Sensor and readout electronics on single wafer in standard CMOS (low-voltage CMOS)
 - Reduced material thickness (50 μm)
 - Small pixel size (18 μ m x 18 μ m)
 - In-pixel signal amplification
 - More cost effective (~£100k/m²)
 - Small bias voltage (V_{bias})

- Slow charge collection by diffusion (2 μs)
- $\circ~$ Limited radiation tolerance (10^{13} 1MeV $n_{eq}/cm^2)$

State-of-the-art for high precision experiments

Pixel = Sensor + simple amplifier

TowerJazz 180 nm

Pixel = Sensor + complex electronics

MAPS in HEP (I)

MIMOSA-28 / ULTIMATE chip:

- Chip size 20 mm x 22 mm
- Total detector area
- Sensor matrix
- Pixel size
- Radiation tolerance
- Process

- 0.15 m²
- 928 x 960 pixels (~0.9 Mpixels)
 - 20.7 μm x 20.7 μm

150 krad (TID)

10¹² 1 MeV n_{ea}/cm² (NIEL)

AMS 0.35 μm OPTO

MAPS in HEP (II)

M. Mager, NIM-A: 824 434-438, 2016

ALPIDE

ALICE ITS upgrade (2020)

ALPIDE chip:

- Chip size
- Total detector area
- Sensor matrix
- Pixel size
- Radiation tolerance
- Process

15 mm x 30 mm 12 m² 512 x 1024 pixels (> 0.5 Mpixels) 28 μm x 28 μm 700 krad (TID) 10¹³ 1 MeV n_{eq}/cm² (NIEL) TowerJazz 180 nm

ERPOOL Monolithic pixel detectors – Depleted MAPS

- Sensor and readout electronics on single wafer in standard High Resistivity/High Voltage-CMOS (HR/HV-CMOS)
 - Reduced material thickness (50 μm)
 - Small pixel size (50 μm x 50 μm)
 - In-pixel amplification
 - More cost effective (~£100k/m²)
 - Larger bias voltage (V_{bias})
 - Fast charge collection by drift (15 ns time resolution)
 - $\circ~$ Good radiation tolerance (10¹⁵ 1MeV $n_{e\alpha}/cm^2)$
 - One limitation: The chip size is in principle limited to 2 cm x 2 cm, although stitching options are being investigated
- Next generation

UNIVERSITY OF LIVERPOOL

DMAPS – History

- HV-CMOS processes originally used for driving automotive or industrial devices
- 2007 → First publication of a HV-CMOS detector chip (test chip in 0.35 µm HV-CMOS process from AMS)

- Small pixel matrix
- Pixels = Sensor + pixel electronics (CSA, discriminator and digital storage)
- Pixel electronics in the deep n-well
- Successful measurements with X-ray and beta radioactive sources
- HV contacts at the top side
- HV-CMOS processes are attractive for particle physics because
 - Silicon bulk biased at high voltage (e.g. -100 V)
 - Multiple nested wells to isolate the low-voltage CMOS readout electronics from the bulk
 - Commercially available (i.e. fabrication is low-cost and reliable, there is availability of multiple vendors and large scale production)

DMAPS – Commercial vendors (I)

OM TSI SEMICONDUCTORS

GLOBALFOUNDRIES

The Global Specialty Foundry Leader

DMAPS – Commercial vendors (II)

Foundry → Parameter ↓		TOUR Specialty Foundry Leader	TSI SEMICONDUCTORS
Feature node	150 nm	180 nm	180 nm
HV	Yes	No	Yes
HR	Yes	Yes	Yes
Quadruple well	Yes	Yes	No (triple)
Metal layers	6	6	6
Backside processing	Yes	Yes	No
Stitching	Yes	Yes	Yes
TSV	No	No	-

DMAPS – Large vs small fill-factor

Sensor cross-section \rightarrow Parameter \downarrow	charge signal CMOS electronics p+ pw nw p+ deep nwell p - substrate	charge signal CMOS electronics n ⁺ pw nw n ⁺ deep pwell p - substrate
Name	Large fill-factor (HV/HR-CMOS)	Small fill-factor (HR-CMOS)
1) p/n junction	p-substrate/large deep n-well	p-substrate/small shallow n-well
2) Substrate biasing	High voltage	Low voltage
3) Substrate resistivity	< 2-3 kΩ·cm	< 8 kΩ·cm
1) + 2) + 3)	 No (little) low-field regions Shorter drift distances Higher radiation tolerance Larger sensor capacitance Larger noise & speed/power penalties RO in charge collection well 	 Low-field regions Longer drift distances Lower radiation tolerance Very small sensor capacitance Reduced noise & power RO outside charge collection well
Process	AMS/TSI and LFoundry	TowerJazz

DMAPS in HEP

- First DMAPS application in an experiment (2019+)
- Requirements:
 - Low material 50 μm
 - Good time resolution< 20 ns (for pixels)
 - Fine segmentation
 80 μm x 80 μm

LIVERSITY OF

Mu3e – Pixel detector history

Prototype	Year	Active area (mm ²)	Functionality	Main features
MuPix1	2011	1.77	Sensor + analog RO	First MuPix prototype
MuPix2	2011	1.77	Sensor + analog RO	
MuPix3	2012	9.42	Sensor + analog/digital RO	First digital RO
MuPix4	2013	9.42	Sensor + analog/digital RO	Working digital RO and time- stamping
MuPix6	2013	10.55	Sensor + analog/digital RO	
MuPix7	2014	10.55	SoC (all relevant features for a fully monolithic chip)	First MuPix prototype with state machine, clock generation and fast serial RO (1.25 Gbit/s)
MuPix8	2017	160	Large SoC	First large MuPix prototype, with TW correction
MuPix9	2018	17.2	SoC	Voltage regulators
MuPix10	2019	479	Full size (reticle) SoC	First full size SoC

Mu3e – MuPix8

MuPix8 - General design features

- Engineering run in the 180 nm HV-CMOS process from ams (aH18)
- Shared with ATLASPix1 (MuPix8 is ~1 cm x 2 cm)
- Fabricated in 2017
- Fabricated using 3 different substrate resistivities
 - 10 Ω·cm, 50-100 Ω·cm and 100-400 Ω·cm

MuPix8 – Chip details

- Matrix with 128 columns x 200 rows
- 3 matrix partitions (sub-matrices A, B and C)
- 81 μm x 80 μm pixel size
- Analog readout in pixel cell
 - Charge sensitive amplifier
- Digital readout in periphery
 - Discriminator
 - 6-bit ToT
 - State machine (continuous readout)
- Time-walk reduction circuitry
- Serial links < 1.6 Gbit/s
- Power consumption ~250 mW/cm²

J. Kroeger, MSc thesis Uni. Heidelberg, 2017

Mu3e – MuPix8

Functional block diagram of the chip architecture

LIVERSITY OF

Mu3e – Time-walk correction

Time-Walk (TW)

 What is it? Variation of the response time of the readout electronics depending on the number of e⁻/h⁺ pairs collected by the sensor

<u>TW correction</u> – <u>Two-threshold method</u>

- Two comparators with two threshold voltages:
 - VTH1 is very low (close to the noise level)
 → it delivers a time-stamp with small TW
 - VTH2 > VHT1 → it confirms that the flagged time-stamp corresponds to a real signal and not to noise
- Measured results show the TW can be reduced to ~6 ns

TW correction – Other methods

- Increasing the response rate of the amplifier (CACTUS, RD50-MPW2)
- Time-walk compensated comparator (HVStripV1, H35DEMO)
- Sampling method (LF-ATLASPix, CERN-RD50)

- Measurement with MuPix8 + scintillator and a Sr90 source
- Time resolution = Time difference between the hit on MuPix8 and scintillator

Mu3e – MuPix10

MuPix10 – General design features

- Engineering run in the 180 nm HV-CMOS process from TSI
- Submitted in December 2019

ATLAS – Several developments

The Global Specialty Foundry Leader

ATLAS – ATLASPix1

ATLASPix1 - General design features

- Engineering run in the 180 nm HV-CMOS process from ams (aH18)
- Shared with MuPix8 (ATLASPix1 is ~1 cm x 2 cm)

<u>ATLASPix1</u> – <u>Chip details</u> \rightarrow <u>3 sub-matrices</u>

- ATLASPix_M2: Triggered readout + no deep p-well
 - Matrix with 56 x 320 pixels
 - 60 μm x 50 μm pixel size
 - Trigger buffers (latency < 25 μs)
- ATLASPix_Simple: Continuous readout + no deep p-well
 - Matrix with 25 x 400 pixels
 - 130 μm x 40 μm pixel size
 - 300 mW/cm²
- ATLASPix_IsoSimple: Continuous readout + deep p-well
 - Identical to previous matrix, but with deep p-well
- Discriminators in active pixel cell
- 10-bit TS (double check) and 6-bit ToT
- State machine
- Serial link < 1.6 Gbit/s</p>

A. Schoening, VERTEX WS, 2018

ATLAS – ATLASPix1

ATLASPix1 – Efficiency

Test beam campaign at Fermilab and CERN (before/after irradiation)

11 December 2019 – Birmingham

ATLASPix1 – Efficiency

Test beam campaign at Fermilab and CERN (before/after irradiation)

- 80 Ω·cm samples
- 60 μm thin
- 60 V bias voltage
- 10° C temperature

- Very high efficiency after 10¹⁵ n_{eq}/cm² fluences (threshold dependent)
- Low noise (dominated by single pixels)

ATLAS – ATLASPix3

ATLASPix3 - General design features

- Engineering run in the 180 nm HV-CMOS process from TSI
- Total chip area is 2 cm x 2 cm
- Fabricated in 2019

ATLASPix3 – Chip details

- Matrix with 132 columns x 372 rows
- 150 μm x 50 μm pixel size
- In-pixel comparator
- Column drain readout with and without trigger
- Trigger latency < 25 μs
- Radiation hard design with SEU tolerant global memory
- Serial powering (only one power supply needed)
- Data interface is very similar to RD53 readout chip (ATLAS)
- Power consumption is ~200 mW/cm² (with 25 ns time resolution)
- Very initial measured results available
- Expected radiation tolerance is 100 Mrad and 1 x 10¹⁵ 1 MeV n_{eq}/cm²

R. Schimassek, Mu3e collaboration meeting, 2019

ATLAS – LF-MonoPix1

LF-MonoPix1 - General design features

- Large MPW run in the 150 nm HV-CMOS process from LFoundry
- Total chip area is 10 mm x 9.5 mm
- Fabricated in 2016
- Fabricated using a 2 kΩ·cm substrate resistivity

LF-MonoPix1 – Chip details

- Matrix with 129 columns x 26 rows
- 50 μm x 250 μm pixel size
- In-pixel analog and digital readout electronics
- State machine (continuous readout)

E. Vilella (Uni. Liverpool) – DMAPS seminar

ATLAS – LF-MonoPix1

Test beam campaign at ELSA with 2.5 GeV electron beam (before/after irradiation)

 Most Probable Value (MPV) decreases after 10¹⁵ n_{eq}/cm² fluences, but very high efficiency

ATLAS – Investigator

Modified TowerJazz process

ATLAS – MiniMALTA

UNIVERSITY OF LIVERPOOL

CERN-RD50

- An international R&D collaboration aimed at developing radiation hard semiconductor devices for high luminosity colliders:
 - High Luminosity-LHC (HL-LHC)
 - \rightarrow > 10¹⁶ 1 MeV n_{eq}/cm²
 - Future Circular Collider (FCC)
 - → > 7×10¹⁷ 1 MeV n_{eq}/cm²
- Detectors used now at LHC cannot operate after such irradiation. CERN-RD50 is studying new structures:
 - N in p sensors
 - 3D
 - LGAD
 - DMAPS

• CERN-RD50 work package to develop and study DMAPS with high priority:

- ASIC design, TCAD simulations, DAQ development and performance evaluation
- ~25 people from ~12 institutions

I. Dawson, ATL-UPGRADEPUB-2014-003, 2014

CERN-RD50 – RD50-MPW1

RD50-MPW1 - General design features

- MPW in the 150 nm HV-CMOS process from LFoundry
- Submitted in November 2017, received in April 2018
- To gain expertise and develop new designs
- Fabricated using 2 different substrate resistivities
 - 600 Ω ·cm and 1.1 k Ω ·cm

RD50-MPW1 – Chip details

- 1) Test structures for eTCT measurements
- 2) Matrix of DMAPS pixels with 16-bit counter
 - 26 rows x 52 columns
 - 75 μm x 75 μm pixel size
 - Aimed at photon counting applications (proof-ofconcept)
- 3) Matrix of DMAPS pixels with continuous readout (FE-I3)
 - 40 rows x 78 columns
 - 50 μ m x 50 μ m pixel size
 - Aimed at particle physics applications
- Analog and digital readout embedded in the sensing area of the pixel

50 µm

RD50-MPW1 – Sensor

- Large fill-factor pixel
- PSUB layer isolates NWELL from DNWELL
 - CMOS electronics in pixel area are possible
- Detector capacitance has 2 contributions
 - P-substrate/DNWELL
 - PSUB/DNWELL
- Total pixel capacitance (50 μm x 50 μm) ~250 fF
- Equivalent Noise Charge (ENC) ~100 120 e⁻

LIVERSITY OF

RD50-MPW1 – Readout electronics

Analog readout

- Sensor biasing circuit, CSA, RC-CR filters and CMOS comparator
- CSA with programmable discharging current
- CMOS comparator with global VTH and local 4-bit DAC for fine tuning

Digital readout

- Continuous readout (synchronous, triggerless, hit flag + priority encoding)
- Global 8-bit Gray encoded time-stamp (40 MHz)
- For each hit
- → Leading edge (LE): 8-bit DRAM memory
- → Trailing edge (TE): 8-bit DRAM memory
- → Address (ADDR): 6-bit ROM memory

→ TOT = LE – TE (off-chip)

RD50-MPW1 – Measured results

Hit maps

- Calibration circuit
 - 1 MHz readout speed
 - 20 test pulses per pixel
 - 1.5 V test pulses

- Radioactive source
 - 1 MHz readout speed

UNIVERSITY OF LIVERPOOL

RD50-MPW1 – Measured results

I-V curve

- I-V of central pixel of test structure (pixel size is 50 μm x 50 μm)
- Measurement done using a probe station with sensor in complete darkness
- VBD ~ 55-60 V as expected from the design
- ILEAK is too high (µA order well before VBD)
- This issue has been extensively studied: <u>TCAD</u> + <u>support from the foundry</u>
- Methodologies to optimize leakage current in <u>new prototype RD50-MPW2</u>

UNIVERSITY OF LIVERPOOL

Post-processing – Lessons learned

- LFoundry adds structures to the design files to prepare them for fabrication.
- These structures <u>involve conductive material</u>.
- We believe these structures <u>contribute quite significantly to the high ILEAK</u>.

- We have minimised the presence of these structures as much as possible.
- Wherever not possible, LFoundry suggested placing these structures inside a PWELL.

Post-processing – TCAD simulations

Electron-current density

Edge defects – Lessons learned $V_{\rm DN}$ VDN V_{HV} PW NW PWELL NWELL PWELL NW SEAL RING other pixels **PSUB** chip edge DNWELL defect outermost test

- Some pixels can be quite close to the edge of the chip
- Defects in silicon lattice due to dicing can become significant
- ILEAK increases when the pixel depletion region is near the defect region

structure pixel

- <u>N-type guard ring</u> added as safeguard to "collect" leakage current
- P-type guard rings added to reduce "lateral" depletion

p-substrate

region

LFoundry 150 nm

Edge defects – Lessons learned $V_{\rm DN}$ VDN V_{HV} PW NW PWELL NWELL PWELL NW SEAL RING other pixels **PSUB** chip edge DNWELL defec outermost test

- Some pixels can be quite close to the edge of the chip
- Defects in silicon lattice due to dicing can become significant
- ILEAK increases when the pixel depletion region is near the defect region

structure pixel

- N-type guard ring added as safeguard to "collect" leakage current
- <u>P-type + PSUB guard rings</u> added to further reduce "lateral" depletion

p-substrate

region

LFoundry 150 nm

Edge defects – TCAD simulations

- 1) Without defects (ideal case)
- 2) With defects and no guard rings
- 3) With defects, and NWELL and PWELL guard rings
- 4) With defects, and NWELL and PWELL with PSUB guard rings

CERN-RD50 – RD50-MPW2

RD50-MPW2 - General design features

- MPW in the 150 nm HV-CMOS process from LFoundry
- Submitted in January 2019 (dies expected in January 2020)
- To test methods to minimize the leakage current
- Fabricated using 4 different substrate resistivities
 - 10 Ω·cm, 100 Ω·cm, 1.9 kΩ·cm and 3 kΩ·cm

RD50-MPW2 – Chip details

- 1) Test structures for eTCT measurements
- 2) Matrix of DMAPS pixels with analog readout only
 - 8 rows x 8 columns
 - $60 \ \mu m \ x \ 60 \ \mu m$ pixel size
 - Aimed at improving the amplifier response rate
- 3) SEU tolerant memory array
- 4) Bandgap reference voltage
- 5) Test structures with SPADs and DMAPS pixels
- New methodologies to minimize the leakage current

CERN-RD50 – RD50-MPW2

- DMAPS in HR/HV-CMOS processes have huge potential for future particle physics experiments
 - Reduced material thickness (50 μm)
 - Small pixel size (50 μm x 50 μm)
 - More cost effective (~£100k/m²)
 - Fast charge collection by drift (15 ns time resolution)
 - Good radiation tolerance (10^{15} 1MeV n_{eq}/cm²)
- Quite a few experiments are interested in DMAPS
 - Mu3e (first application of DMAPS)
 - ATLAS ITk upgrade (cancelled)
 - LHCb Mighty Tracker upgrade
 - CLIC
 - CERN-RD50 (detector R&D)
- Several prototypes and "pre-production" detectors developed for these experiments
- Detector R&D to further develop its performance done within CERN-RD50

Back up slides

RD50-MPW1 – Readout architecture

- Time-stamp (LE + TE) and pixel address (ADDR) are stored in End Of Column (EOC) circuit
- If > 1 hits in the same column
 - Pixel with hit flag = '1' and largest address is read out first (hit flag and priority encoding)

LVDS

LVDS

clk640MHz

- Shift register with 78 EOC circuits (one EOC per column) @ 40 MHz
 TWEPP 2019
- Continuous readout sequence:
 - LE, TE and ADDR of the hit pixel with hit flag = '1' and highest priority stored in EOC (1 clock cycle)
 - 2) CU reads sequentially the data stored in each EOC @ 40 MHz (78 clock cycles)
 - 3) Serializers send data off-chip @ max. speed of 640 MHz

RD50-MPW1 – Measured results

eTCT measurements to study sensor depletion region

 Samples irradiated at TRIGA reactor in Ljubljana to several different n-fluences ranging from 1E13 to 2E15 n_{eq}/cm²

o <u>Test structure</u>

- \rightarrow 3 x 3 pixels matrix without readout electronics
- ➔ Central pixel to read out
- ➔ Outer pixels connected together
- ➔ Pixel size is 50 μm x 50 μm

• Depletion depth changes with irradiation + acceptor removal effects seen

TCAD simulations – Post-processing

- Increase in ILEAK when conductive material is present on the surface (RD50-MPW1).
- ILEAK is reduced when conductive material is placed in PWELL (RD50-MPW2).

TCAD simulations – Edge defects

TCAD simulations – Pixel geometry

<u>3D simulations</u> – <u>Electric field as a function of corner geometry in pixel</u>

