

Jet performance in ATLAS; First 13 TeV jet results

Dimitris Varouchas

• LHC Run 2 since June 2015: centre of mass energy at 13 TeV for the first time in particle physics history

Unprecedented centre of mass energy

- A high-mass dijet event collected by ATLAS in September, 2015.
- The two central high-p_⊤ jets have an invariant mass of 8.8 TeV

LHC Run 2, $\sqrt{s} = 13$ TeV

2015 peak luminosity 5.22 nb/s: \approx 6 $Z\rightarrow II$ events/s

- 50ns and 25ns bunch crossing data taking
- Most of Run 2 Published results based on early 50ns data (~80 pb-1)
- 25ns data results are around the corner (see end of the year CERN seminar on Tuesday 15th of December)

The price of high Luminosity: Pile-up

Z->µµ candidate event with 25 reconstructed vertices

primary vertex

ATLAS

+ toroid

The ATLAS Calorimeter

- Large full coverage calorimeter system: |η|<4.9
- Mixed technologies to match precision requirements
 - ◆ Electromagnetic: LAr/lead
 - Hadronic central iron/scintillator with tiled sampling structure Hadronic LAr/ copper
 - Forward LAr/copper-tungsten
- Highly granular detector: ~200k readout channels

Jets and their performance

Jets introduction

- Energetic jets in LHC pp collisions are produced abundantly
 - Signal, QCD prediction
 - Significant background to other analyses
 - Indispensable element of almost all LHC analyses
- A new energy regime and new tools for the analysis of hadronic final states from theorists
 - ♦ New jet algorithms : anti-k_t
 - → Jet substructure techniques
 - Unprecedented high luminosity environment: increase of pile-up
- Excellent detector capabilities
 - Calorimeter granularity and tracking enabling sophisticated clustering algorithms and calibration.
 - Combine information from sub-detectors (tracker +calorimeter + muon system)

What are jets?

- The challenge (and opportunity!) of jets comes from physics of QCD: parton shower and hadronization
 - The particles we measure -π,
 K, p, n, etc- are **not** the particles from the hard scattering
- Jets are the outputs of the clustering algorithms that group inputs (truth particles or calorimeter clusters)
 - The goal: improve our ability to understand the event by providing proxies for quarks and gluons

Jet inputs: calorimeter clusters

⇒Exploit high resolution of calorimeters and fine longitudinal segmentation

- 3-dimensional topological clustering of calorimeter read-out channels (cells)
 - Optimise to follow the shower development in the calorimeter
 - Noise suppression
 - → Ideal for jet substructure (constituent level calibration)

3D topological cluster

Jet inputs: calorimeter clusters

- Two energy scale calibrations for topological clusters
 - Electromagnetic (**EM**)
 - Local cluster weighting (**LCW**): Distinguish EM/HAD depositions

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

- But the parton shower is actually not invertible!
- There is no correct jet algorithm: only better or worse
- What are the metrics for useful algorithm?

IRC Safety

- Parton shower can split particles
- Clustering should not be sensitive to this!

- Parton shower can add extra soft radiation
- Also want to be insensitive to these effects!
- These are the main theoretical considerations on jet clustering
- → Can make comparisons to calculations much easier if these are followed!

Jet algorithms

k_T algorithm

$$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^2$$

C/A algorithm

$$d_{ij} = \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = 1$$

anti-k_T algorithm

$$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^{-2}$$

$$(\Delta R)^2 \equiv (\Delta \eta)^2 + (\Delta \phi)^2$$

$$p_T^A > p_T^B$$

- Inputs: energy of topological clusters
- Anti-k_t family of jet algorithms are all IRC safe: the standard at LHC experiments
 - Regular shape objects (easy to calibrate, more resilient to pile-up)

R choice (jet size)

 \Rightarrow Use the R appropriate for the energy scale of the given signal

Boosted objects and large-R jets

- Decay products of a boosted object are highly collimated and can even overlap
- On the example of t→Wb
 - ◆ Decay products most likely within DR~1 for $p_T^{top}>350$ GeV
 - ◆ Solution: use a single large jet containing all decay products

$R^{th,nnpdf} = 14\text{TeV}$ to 8 TeV xsec ratios

Cross Section	$R^{ m th,nnpdf}$	$\delta_{ ext{PDF}}(\%)$	δ_{α_s} (%)	$\delta_{ m scales}$ (%)
$tar{t}/Z$	2.12	± 1.3	-0.8 - 0.8	-0.4 - 1.1
$(t\bar{t}$	3.90	\pm 1.1	-0.5 - 0.7	-0.4 - 1.1
Z	1.84	± 0.7	-0.1 - 0.3	-0.3 - 0.2
W^+	1.75	± 0.7	-0.0 - 0.3	-0.3 - 0.2
W^-	1.86	\pm 0.6	-0.1 - 0.3	-0.3 - 0.1
W^+/W^-	0.94	± 0.3	-0.0 - 0.0	-0.0 - 0.0
W/Z	0.98	\pm 0.1	-0.1 - 0.0	-0.0 - 0.0
ggH	2.56	\pm 0.6	-0.1 - 0.1	-0.9 - 1.0
$t\bar{t}(M_{tt} \geq 1 \text{ TeV})$	8.18	± 2.5	-1.3 - 1.1	-1.6 - 2.1
$t\bar{t}(M_{ m tt} \geq 2 { m TeV})$	24.9	± 6.3	-0.0 - 0.3	-3.0 - 1.1
$\sigma_{ m jet}(p_T \geq 1 { m ~TeV})$	15.1	± 2.1	-0.4 - 0.0	-1.9 - 2.4
$\sigma_{ m jet}(p_T \geq 2 { m ~TeV})$	182	± 7.7	-0.3 - 0.2	-5.7 - 4.0

Jet calibration in ATLAS

Why calibrate jets?

what we need to measure

- Particle jet energy different than energy measured in the calorimeter
 - Calorimeter non compensation hadrons energy deposits are only partially measured
 - Energy deposits missed because of dead material
 - ◆ Inefficiencies due to noise and pile-up
- Need a calibration to reach the particle jet energy level

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination

Jets at
EM or LCW
Calorimeter
Scale
Origin Correction
Correction

ATLAS-PHYS-PUB-2015-015

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination

Jet-by-jet pile-up sensitivity

Event-by-event pile-up activity (pile-up density)

$$\rho = \operatorname{median} \left\{ \frac{p_{T,i}^{\text{jet}}}{A_i^{\text{jet}}} \right\}$$

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination
 - MC JES: Calibrates the jet energy and pseudo rapidity to the reference scale

ATLAS-CONF-2015-002

Jets at EM or LCW Calorimeter Scale

- Global sequential calibration (GSC):
 reduce fluctuation effects
 - Use jet-by-jet information to correct the response of each jet individually
 - Improves jet energy resolution

- GSC variables
 - Longitudinal structure of the energy depositions within the calorimeters
 - Track information associated to the jet
 - Information related to the activity in the muon chamber behind a jet (muon segments)
 - Modelling of variables at 13 TeV already tested: **Good Data/MC agreement**

Global Sequential Calibration

• Derived using MC, parametrised in p_T and η

ATLAS-CONF-2015-002 ATL-PHYS-PUB-2015-015

Improves flavour uncertainties

$$width_{trk} = \frac{\displaystyle\sum_{i}^{i} p_{T}^{i} \Delta R(i, \text{jet})}{\displaystyle\sum_{i}^{i} p_{T}^{i}}$$
, average distance between tracks associated to jets and jet axis

In-situ corrections

- In-situ measurement using a jet recoiling against well-calibrated object as a reference
- Combination of 3 in-situ measurements

JES uncertainties in Run 1

ATLAS-CONF-2015-037

- Final JES uncertainties components O(60), a combination of in-situ and estimated upstream in calibration chain
- Statistical methods have been developed to reduce the number of final components

Jet energy resolution (JER)

ATLAS-CONF-2015-037

- Measure jet resolution combining Run 1 in-situ γ+jet, Z+jet and dijet for the first time, by performing a p_T global fit
- Constraint fit at low pT via an in-situ noise study

Jet uncertainties in Run 2

- The idea is to be based on the Run-I knowledge
- Use the 2012 in-situ
- Need to apply a correction/uncertainty based on 2012→2015 simulation changes to maintain the applicability of the 2012 in-situ corrections to 2015 data
 - ◆ Detector: IBL added material because of IBL services, mainly in the forward region
 - ◆ Beam conditions: 8→13 TeV; 50→25 ns (pile-up)

**** ...

ATLAS-PHYS-PUB-2015-015

Jet energy uncertainties in Run 2

ATL-PHYS-PUB-2015-015

- ~3% additional uncertainty with respect to Run 1 at low pt
 - ♦ Negligible for jet p_T > 200 GeV

SM jet inclusive cross section measurement

First inclusive jet x-section at 13 TeV

ATLAS-CONF-2015-034

- Inclusive jets cross-section measurement using the first 13 TeV data
 - → $350 < p_T < 840 \text{ GeV and } |y_{jet}| < 0.5$
 - Single jet trigger, fully efficient above 300 GeV
 - Correct detector effets using unfolding
 - ◆ Dominant systematic uncertainty: jet energy scale

NLO QCD predictions are consistent with the measured cross sections

Searches for New Physics in di-jet final states

Searches of new physics

arXiv:1512.01530v2

Search for non-SM features in di-jet final, two analyses

- → New resonances in m_{jj} spectrum
 - Select events with leading (subleading) jet p_T > 440(50) GeV
 - Search for a bump in invariant mass m_{ii}
- Deviations in angular variables
 - Complementary analysis to m_{ij} resonance search
- Full 2015 dataset has been analysed

Dijet resonance search

arXiv:1512.01530v2

 Fit m_{jj} distribution using analytic function

Compare fit with observed data

 No significant excess found, data are consistent with the background hypothesis

Dijet resonance search

arXiv:1512.01530v2

- No significant excess found, data are consistent with the background hypothesis
 - ◆ QBH: M_{th} < 8.3 TeV excluded @ 95% CL
 - Significantly better than Run 1 sensitivity

Highest mass candidate, m_{jj}=6.9 TeV

arXiv:1512.01530

- Jet₁ p_T = 3.2 TeV, Jet₂ p_T = 3.2 TeV, E_T^{miss} = 46 GeV

First tt cross section measurement at 13 TeV

Top quark trivia

Heaviest elementary particle

- Top pair decay channels
 - → Dilepton (e/ μ / τ) ~ 11%
 - + I+jets (e/ μ / τ) ~ 45%
 - ◆ All jets ~ 44%

- Why the top quark pair production?
 - Cross section increases by a factor of ~4
 (8 → 13 TeV)
 - **→** Excellent **precision tests** of **Standard Model**
 - Sensitive to QCD effects, PDF, top quark mass
 - Probe of new physics

Top quark trivia

- Heaviest elementary particle
- Top pair decay channels
 - → Dilepton (e/ μ / τ) ~ 11%
 - + I+jets (e/ μ / τ) ~ 45%
 - ◆ All jets ~ 44%

- Cross section increases by a factor of ~4
 (8 → 13 TeV)
 - Excellent precision tests of Standard Model
 - Sensitive to QCD effects, PDF, top quark mass
 - Probe of new physics

e/µ + b-jets at 13 TeV

ATLAS-CONF-2015-033

- Select **opposite-sign eµ pair**
- Two signal regions with $N_{b-tag\ jets} = 1$ or 2
- Dominant uncertainties
 - Luminosity 10%
 - Statistics 6%
 - Theory 5%
 - 13.5 % total uncertainty
 - ➡ It was 4% for full Run-1 dataset analysis
 - **→** JES uncertainty subdominant

Result

$$\sigma_{t\bar{t}} = 829 \pm 50 \text{ (stat) } \pm 56 \text{ (syst) } \pm 83 \text{ (lumi) pb}$$

Theory NNLO+NNLL
$$832^{+40}_{-46}$$
 pb at $m_t = 172.5$ GeV

Czakon, Fiedler, Mitov PRL 110 252004

ATLAS-CONF-2015-033

tt production at 13 TeV

Lepton-jets at 13 TeV

ATLAS-CONF-2015-049

- ee/μμ + b-jets
 - Opposite sign ee/μμ
- lepton + jets
 - ◆ One e/µ
 - Four jets (1 b-tagged)

Lepton-jets at 13 TeV: results

ATLAS-CONF-2015-049

ee/µµ + b-jets

Result

$$\sigma_{t\bar{t}} = 749 \pm 57 \text{ (stat) } \pm 79 \text{ (syst) } \pm 74 \text{ (lumi) pb}$$
 16% 8% 11% 10%

Uncertainties

- Theory: 9%
- Jet Energy Scale: 1.2%

$e/\mu + 4$ -jets

Result

$$\sigma_{t\bar{t}} = 817 \pm 13 \text{ (stat)} \pm 103 \text{ (syst)} \pm 88 \text{ (lumi) pb}$$
2% 13% 11% 17%

Uncertainties

- Jet Energy Scale, the dominant one: 9%
- b-tagging: 4%
- Theory: 5%

832
$$_{-46}^{+40}$$
 pb at $m_{\rm t} = 172.5$ GeV

tt cross section in ATLAS

NNLO+NNLL predictions consistent with 13 TeV measurements

tt cross section in LHC

- Five measurements already at 13 TeV from ATLAS and CMS
- All consistent with theory and within each other

Conclusions

- Jets in LHC: challenging but extremely interesting objects
 - Huge amount of work optimising their energy calibration and performance
- Run 2 (13 TeV) remarkable results already published challenging/exceeding
 Run 1 sensitivity
 - → Jet inclusive cross section measurement
 - Contributed to reveal and fix an important trigger issue
 - → tī-cross section measurements
 - ◆ Searches of New Physics in di-jet final states
- Robust jet performance in Run 2: key ingredient for most ATLAS physics analyses
 - ◆ Perform jet energy calibration and evaluate related uncertainties in a very short time scale during last summer
- **→** ATLAS Run 2 jets ready for ambitious physics program

If time permits

A large-R analysis from 8 TeV: VV resonance

How to search for diboson resonances

- ullet Observable: invariant mass of diboson system $m_{
 m VV}$
- Here: search for narrow resonance on top of smoothly falling background distribution

Decay modes:

- Semi-leptonic final state
- Full-hadronic final state:
 - Large branching ratio:

$$\mathrm{BR}(W o qq) pprox 3 imes \sum_{\ell=e,\mu} \mathrm{BR}(W o \ell
u)$$

$$\mathrm{BR}(Z \to qq) pprox 10 imes \sum_{\ell=e,\mu} \mathrm{BR}(Z \to \ell\ell)$$

- No MET
- large dijet background

Full-leptonic final state

- Clean signature and low background
- Small branching ratio
- (Not considered here)

A large-R analysis from 8 TeV: VV resonance

arXiv:1506.00962

VV-> qq qq (2 large-R jets) m_{JJ} spectrum

- Good agreement between data and background model over full dijet mass range except for region around m_{JJ}=2 TeV
- Frequentist approach used to interpret data
 - Local significance: WZ: 3.4σ , WW: 2.6σ , ZZ: 2.9σ
 - Global significance: WZ: 2.5σ

Back-up