

supernemo collaboration

Neutrinoless Double-Beta Decay and SuperNEMO

Dave Waters University College London

University of Birmingham 29th January 2014

- Measuring the Mass of the Neutrino Þ.
- ▶ Neutrinoless Double-Beta Decay
- How to Build a Neutrinoless Double-Beta Decay Experiment ?
- The SuperNEMO Experiment Þ.
- Latest Results From the Field b.
- The most abundant matter particle in the universe. Important roles in :
	- Cosmology : BBN, CMB anisotropies & structure formation ь
	- Astrophysics : 99% of energy released in supernovae carried by neutrinos.
- Tiny but *non-zero* mass, very different in scale from the other fermions : $m_{_V}/m_{_e}\sim$ 10^{-7}
- Could the very *small* neutrino mass be related to physics at extremely *high* energy scales ?

$$
\text{``See-saw'' mechanism:} \qquad m_v \approx \frac{M_{\text{EWK}}^2}{M_{\text{GUT}}} \approx \frac{(100 \text{ GeV})^2}{10^{15} \text{ GeV}} \approx 10 \text{ meV}
$$

• Is there CP violation in the lepton sector and could this be related to the observed matterantimatter asymmetry in the universe ?

Measuring The Neutrino Mass

Supernova 1987A

The spread in arrival times for different energy neutrinos yields :

$$
m_{v} \le 15 \text{ eV}
$$

Arnett & Rosner (1987)

Large Scale Structure

Thomas, Abdalla & Lahav (2010)

The growth of structure in the early universe was suppressed by free streaming neutrinos – depends on their velocity and hence mass.

$$
\sum m_v \le 0.28 \text{ eV} (95\% \text{ C.L.})
$$

Cosmological model dependence ?

Measuring The Neutrino Mass

Tritium End Point Experiments

- ${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{v}_{e} + 18.6$ keV
	- $m_{v_e} \le 2.2$ eV (95% C.L.)

Kraus et al. (2005), Aseev et al. (2011)

- Direct (relatively model independent) kinematic measurement.
- Extremely challenging experimentally.
- Next generation will reach ~0.2 eV

Key Questions in (No) Neutrino Physics

- Neutrinos have mass and they mix.
- Precision measurements of mixing angles and Δm2.
- **Nature of neutrinos** : Dirac ($v \neq \overline{v}$) or Majorana ($v = \overline{v}$)
- **Absolute neutrino mass scale** : only limits so far :

 $m_{\overline{v}_e}$ < 2.2 eV (Tritium end-point) $\sum m_{v_i} < 0.3$ eV (Cosmology)

- **Neutrino mass-hierarchy** :
	- Normal : $m_1 < m_2 < m_3$
	- $Inverted: m_3 < m_1 < m_2$
	- Quasi-degenerate : $m_1 \approx m_2 \approx m_3$
- **CP-violation in neutrino sector** :
	- Dirac phase : $\,\delta\,{\neq}\,0,\pi\,$
	- **Majorana phases** : $\alpha_{21}, \alpha_{31} \neq 0, \pi$

 $U =$ U_{e1} U_{e2} U_{e3} $U_{\mu 1}$ $U_{\mu 2}$ $U_{\mu 3}$ $U_{\tau 1}$ $U_{\tau 2}$ $U_{\tau 3}$ $\big($ ⎝ $\overline{}$ $\overline{}$ \overline{a} ⎠ R 1 0 0 $0 \quad e^{i\alpha_{21}/2} \quad 0$ 0 0 $e^{i\alpha_{31}/2}$ \int ⎝ $\overline{}$ $\overline{}$ \overline{a} ⎠ **PMNS mixing matrix : # Majorana Phases**

Double-Beta Decay

2-Neutrino Double Beta Decay

[Goeppert-Mayer, 1935]

- (A,Z) → $(A,Z+2)$ + 2*e*[−] + 2 \overline{v}_e
- Lepton number conserved.
- Allowed in Standard Model.
- Rate $\thicksim O\big(G_F^2\big)$

0-Neutrino Double Beta Decay [Furry, 1939]

- (A,Z) → $(A,Z+2)$ + 2*e*[−]
- Lepton number violation : $\Delta L = 2$
- Forbidden in Standard Model.
- Rate $(0\nu\beta\beta) \ll$ Rate $(2\nu\beta\beta)$

Measure the summed electron energy and compare to the energy of the transition :

- Remember the pairing term in the SEMF!
- \triangleright ββ candidates are all even-even nuclei.

Candidate isotopes :

Effective Neutrino Mass (Light Neutrino Exchange)

- Which neutrinos participate in neutrinoless double-beta decay ?
- We must consider a *coherent* sum over neutrino amplitudes :

• Hence, experiments are sensitive to an *effective* 0νββ neutrino mass :

$$
\langle m_{v} \rangle = \left| \sum U_{ei}^{2} m_{i} \right| = \left| U_{e1}^{2} m_{1} + U_{e2}^{2} m_{2} e^{i \alpha_{21}} + U_{e3}^{2} m_{3} e^{i \alpha_{31}} \right|
$$

 α_{21}, α_{31} = Majorana phases

Neutrino Mass : Target Sensitivity

Neutrino Mass : Target Sensitivity

Signal in Heidelberg-Moscow experiment ?

- ► HPGe detector enriched with 86% ⁷⁶Ge
- \blacktriangleright Peak observed in just the right place, but several unexplained spectral features.

► Half-life :

 $T_{1/2}^{0\nu} = (0.69 - 4.18) \times 10^{25}$ years (3σ)

Corresponding neutrino mass :

 $\langle m_v \rangle$ ~ 0.4 eV

Neutrino Oscillations

- Largest Δm^2 from "atmospheric" oscillations.
- ► Therefore there is at least one neutrino with :

$$
m_v \sim \sqrt{\Delta m_{atm}^2} \sim 50 \text{ meV}
$$

 $\overline{0.9}$

Effective Neutrino Mass

Nuclear Matrix Elements

How To Build a ββ-Experiment

- Expected half-lives for $0\nu\beta\beta$ are in the range **10²⁴ to 10²⁷ years** for interesting <m_v>
- The basic strategy is therefore :
	- 1. Collect N × Avogadro's number of nuclei of your chosen ββisotope. **Enrichment** varies from relatively easy (^{136}Xe) to extremely difficult (48Ca, 150Nd). Natural Tellurium can be used.
	- 2. Purify the sample to remove trace radioactive contamination. **Radiochemistry** varies according to

the isotope.

- 3. Construct a detector able to detect 0νββ decays with maximum **resolution, efficiency** and **purity**.
- 4. Wait quite a long **time** …

How To Build a ββ-Experiment

The Background Problem

- Go underground (at least a few thousand meters of water equivalent)
- Suppress radioactive backgrounds, primarily Uranium and Thorium decay chain products which are present in all materials.
	- \blacktriangleright T_{1/2}(232Th, 238U) ~ 10¹⁰ years
	- **T1/2(0νββ) > 1025 years**
- Background from $2νββ$: resolution and isotope choice.

§ Most important culprits :

- Many other potential sources including cosmogenics, "degraded" alphas etc.
- Natural radioactivity falls very rapidly above \sim 3 MeV.
	- What can be done ? Extremely careful material selection.
		- Purification techniques.
		- Barriers against Radon penetration.
		- Vetos & active shielding.
		- Background tagging/identification techniques e.g. single-site (0νββ) versus multiple-site (γ)

It's All About Backgrounds

SuperNEMO Demonstrator Module

20 tons Radon emanation into tracker must be < 1.5 mBq *1 decay every ~10 minutes*

Brazil Nut

4 grams 400 mBq of radium decays *1 decay every ~2 seconds*

Irreducible Background : 2νββ

- **NEMO-3** è **SuperNEMO**
	- **100Mo** è **82Se**

Experimental Approaches

Elements of Both Gaseous Xe TPC Pixelated CdZnTe

Homogenous

"source = detector"

Advantages : Excellent ΔE/E **Compact**

Semiconductor Bolometer (Liquid-) Scintillator

(Super)-NEMO

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first phase.
- 3. Aim to reach the inverted mass hierarchy (~50 meV) region by the end of the decade.
- 4. In the event of a discovery by any of the next-generation experiments, the trackingcalorimeter approach is by far the best one for characterising the mechanism of 0νββ decay.

Neutrino **E**ttore **M**ajorana **O**bservatory **3**

NEMO-3

NEMO-3 : Physics Highlights (2νββ)

Double-Beta Decay of ¹³⁰Te

Arnold et al. 2011

130Te 454 g × 3.5 y $T_{1/2}$ = 7.0 ± 1.4 × 10²⁰ years half-life > 10 billion × age of universe ! First high precision direct measurement of this lifetime.

Geochemical measurements :

- Measure integrated decay rate via abundance of daughter isotope
- § Small M, large T

Bernatowicz et al. 1993

Native Te (Colorado) Sample Age $≈ 1.6$ billion years $T_{1/2} \approx 30 \times 10^{20}$ years

AuTe₂ (Colorado)

Sample Age ≈ 28 million years $T_{1/2} \approx 9 \times 10^{20}$ years

> **Te Foil (LSM Lab)** Sample Age ≈ 0 $T_{1/2} \approx 7 \times 10^{20}$ years

Time-varying decay rate ??

Sensitive test of $G_F(t)$

0νββ Search with NEMO-3

SuperNEMO : Road Map

NEMO-3 Dismantling

SuperNEMO : How to Get There ?

SuperNEMO Demonstrator Module : Overview

Build a 2000 channel Geiger-mode tracking detector :

- Must reconstruct β-electron tracks with high efficiency and resolution.
- Must contribute zero background in the $0\nu\beta\beta$ analysis \rightarrow ultra-pure materials only.
- Must be impermeable to the diffusion of radon into the gas volume \rightarrow gas-sealing
- Robotic construction for accuracy, cleanliness and mass-production capability.
- Electronics, cabling, gas-system & software.

Tracker Production

Each cassette is transferred to a testtank for burn-in and testing.

automatically April 2013.

• Cassettes are now routinely passing all production quality requirements.

Tracker Frame

Tracker Cell Insertion

Low Background Measurements

- Radon concentration in ordinary air is 10-100 Bq/m³
- We need to be able to measure concentrations down to 0.1 mBq/m³ : 100,000 times smaller.
- Latest results indicate that we have achieved the required sensitivity.

Radon Concentration Line Sensitivity

SuperNEMO : Timeline

Next-generation 76Ge experiment

- ► Best way to directly check **KKDC** claim (no NME uncertainties)
- Location : Gran Sasso

÷

Cu "mini-shroud" to prevent drift of 42K+ ions onto Ge diodes

GERDA

Enriched **X**enon **O**bservatory

- Liquid-xenon TPC with ionisation & scintillation readout
- **Fiducial mass of 79.4 kg of 136Xe for the 0νββ search.**

Comparison of Recent Limits

Timescales

• Currently running/planned experimental phases, reaching $\langle m_v \rangle \sim 100$ meV

Selected Experiments Only

Summary

Summary

- We are compelled to search for 0νββ : it is the only way to address fundamental questions in neutrino physics.
- Several next-generation experiments are under construction, using a variety of techniques that span the [mass/background] space.
- Strengths of the SuperNEMO approach are :
	- § Comparable sensitivity to other experiments for much smaller isotope masses.
	- § Isotope flexibility : if any *ton-scale* experiment discovers a signal, then SuperNEMO with *few(100) kg* can feasibly explore the signal with several different isotopes.
	- In the event of a discovery, a tracking experiment is by far the best approach to determine the mechanism of neutrinoless double-beta decay.
- Construction of the SuperNEMO Demonstrator Module is well advanced.

