

supernemo collaboration

Neutrinoless Double-Beta Decay and SuperNEMO

Dave Waters University College London

University of Birmingham 29th January 2014

- Measuring the Mass of the Neutrino
- Neutrinoless Double-Beta Decay
- ► How to Build a Neutrinoless Double-Beta Decay Experiment ?
- The SuperNEMO Experiment
- Latest Results From the Field

- The most abundant matter particle in the universe. Important roles in :
 - Cosmology : BBN, CMB anisotropies & structure formation
 - ► Astrophysics : 99% of energy released in supernovae carried by neutrinos.
- Tiny but *non-zero* mass, very different in scale from the other fermions : $m_v/m_e \sim 10^{-7}$
- Could the very *small* neutrino mass be related to physics at extremely *high* energy scales ?

"See-saw" mechanism :
$$m_v \approx \frac{M_{\rm EWK}^2}{M_{\rm GUT}} \approx \frac{(100 \text{ GeV})^2}{10^{15} \text{ GeV}} \approx 10 \text{ meV}$$

• Is there CP violation in the lepton sector and could this be related to the observed matterantimatter asymmetry in the universe ?

Measuring The Neutrino Mass

Supernova 1987A

The spread in arrival times for different energy neutrinos yields :

$$m_v \leq 15 \text{ eV}$$

Arnett & Rosner (1987)

Large Scale Structure

Thomas, Abdalla & Lahav (2010)

The growth of structure in the early universe was suppressed by free streaming neutrinos – depends on their velocity and hence mass.

$$\sum m_{v} \le 0.28 \text{ eV} (95\% \text{ C.L.})$$

Cosmological model dependence ?

Measuring The Neutrino Mass

<u>Tritium End Point Experiments</u> ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{v}_{e} + 18.6 \text{ keV}$

 $m_{v_e} \le 2.2 \text{ eV} (95\% \text{ C.L.})$

Kraus et al. (2005), Aseev et al. (2011)

- Direct (relatively model independent) kinematic measurement.
- Extremely challenging experimentally.
- Next generation will reach ~0.2 eV

Key Questions in (No) Neutrino Physics

- Neutrinos have mass and they mix.
- Precision measurements of mixing angles and Δm^2 .
- Nature of neutrinos : Dirac (v ≠ v̄) or Majorana (v = v̄)
- Absolute neutrino mass scale : only limits so far :

 $m_{\overline{v}_e} < 2.2 \text{ eV}$ (Tritium end-point) $\Sigma m_{v_e} < 0.3 \text{ eV}$ (Cosmology)

- Neutrino mass-hierarchy
 - Normal : $m_1 < m_2 < m_3$
 - Inverted : $m_3 < m_1 < m_2$
 - Quasi-degenerate : $m_1 \approx m_2 \approx m_3$
- CP-violation in neutrino sector :
 - Dirac phase : $\delta \neq 0, \pi$
 - ▶ Majorana phases : $\alpha_{21}, \alpha_{31} \neq 0, \pi$

 PMNS mixing matrix :
 Majorana Phases

 $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$

Double-Beta Decay

2-Neutrino Double Beta Decay

[Goeppert-Mayer, 1935]

- $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$
- Lepton number conserved.
- Allowed in Standard Model.
- Rate ~ $O(G_F^2)$

0-Neutrino Double Beta Decay [Furry, 1939]

- $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$
- Lepton number violation : $\Delta L = 2$
- Forbidden in Standard Model.
- Rate $(0\nu\beta\beta) \ll \text{Rate}(2\nu\beta\beta)$

Measure the summed electron energy and compare to the energy of the transition :

- Remember the pairing term in the SEMF!
- ▶ $\beta\beta$ candidates are all even-even nuclei.

Candidate isotopes :

Isotope	Q _{ββ} (MeV)	Nat. Abund. (%)
⁴⁸ Ca	4.272	0.187
⁷⁶ Ge	2.039	7.8
⁸² Se	2.996	9.2
⁹⁶ Zr	3.350	2.8
¹⁰⁰ Mo	3.034	9.6
¹¹⁰ Pd	2.004	11.8
¹¹⁶ Cd	2.814	7.6
¹²⁴ Sn	2.530	5.6
¹³⁰ Te	2.528	34.5
¹³⁶ Xe	2.459	8.9
¹⁵⁰ Nd	3.371	5.6
energetic decay to separate fro background	hment often pos Iways expensive	

Effective Neutrino Mass (Light Neutrino Exchange)

- Which neutrinos participate in neutrinoless double-beta decay ?
- We must consider a *coherent* sum over neutrino amplitudes :

• Hence, experiments are sensitive to an *effective* $0\nu\beta\beta$ neutrino mass :

$$\langle m_{v} \rangle = \left| \sum U_{ei}^{2} m_{i} \right| = \left| U_{e1}^{2} m_{1} + U_{e2}^{2} m_{2} e^{i\alpha_{21}} + U_{e3}^{2} m_{3} e^{i\alpha_{31}} \right|$$

 α_{21}, α_{31} = Majorana phases

Neutrino Mass : Target Sensitivity

Neutrino Mass : Target Sensitivity

Signal in Heidelberg-Moscow experiment?

- ▶ HPGe detector enriched with 86% ⁷⁶Ge
- Peak observed in just the right place, but several unexplained spectral features.
- ► Half-life :

 $T_{1/2}^{0v} = (0.69 - 4.18) \times 10^{25}$ years (3 σ)

Corresponding neutrino mass :

$\langle m_v \rangle \sim 0.4 \text{ eV}$

Neutrino Oscillations

- Largest Δm² from "atmospheric" oscillations.
- Therefore there is at least one neutrino with :

$$m_v \sim \sqrt{\Delta m_{atm}^2} \sim 50 \text{ meV}$$

0.9

Effective Neutrino Mass

Nuclear Matrix Elements

How To Build a $\beta\beta$ -Experiment

- Expected half-lives for $0\nu\beta\beta$ are in the range 10²⁴ to 10²⁷ years for interesting $< m_{\nu} >$
- The basic strategy is therefore :
 - Collect N × Avogadro's number of nuclei of your chosen ββ isotope. Enrichment varies from relatively easy (¹³⁶Xe) to extremely difficult (⁴⁸Ca, ¹⁵⁰Nd). Natural Tellurium can be used.
 - Purify the sample to remove trace radioactive contamination.
 Radiochemistry varies according to the isotope.
 - Construct a detector able to detect 0vββ decays with maximum resolution, efficiency and purity.
 - 4. Wait quite a long time ...

How To Build a $\beta\beta$ -Experiment

The Background Problem

- Go underground (at least a few thousand meters of water equivalent)
- Suppress radioactive backgrounds, primarily Uranium and Thorium decay chain products which are present in all materials.
 - ► T_{1/2}(²³²Th,²³⁸U) ~ 10¹⁰ years
 - T_{1/2}(0vββ) > 10²⁵ years
- Background from $2\nu\beta\beta$: resolution and isotope choice.

Most important culprits :

What can be done?

- Many other potential sources including cosmogenics, "degraded" alphas etc.
- Natural radioactivity falls very rapidly above ~3 MeV.
 - Extremely careful material selection.
 - Purification techniques.
 - Barriers against Radon penetration.
 - Vetos & active shielding.
 - Background tagging/identification techniques e.g. single-site (0vββ) versus multiple-site (γ)

It's All About Backgrounds

SuperNEMO Demonstrator Module

20 tons Radon emanation into tracker must be < 1.5 mBq *1 decay every ~10 minutes*

Brazil Nut

4 grams 400 mBq of radium decays 1 decay every ~2 seconds

Irreducible Background : $2\nu\beta\beta$

NEMO-3 → SuperNEMO

¹⁰⁰Mo → ⁸²Se

Experimental Approaches

Elements of Both Gaseous Xe TPC Pixelated CdZnTe

<u>Homogenous</u>

"source = detector"

Advantages : Excellent ΔE/E Compact

Techniques : Semiconductor Bolometer (Liquid-) Scintillator

(Super)-NEMO

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first phase.
- 3. Aim to reach the inverted mass hierarchy (~50 meV) region by the end of the decade.
- 4. In the event of a discovery by any of the next-generation experiments, the trackingcalorimeter approach is by far the best one for characterising the mechanism of $0\nu\beta\beta$ decay.

Neutrino Ettore Majorana Observatory 3

NEMO-3

NEMO-3 : Physics Highlights $(2\nu\beta\beta)$

Isotope	mass, g	Q _{ββ} (keV)	T _{1/2} (2v) (10 ¹⁹ yrs)	Comments
¹⁰⁰ Mo	6914	3034	0.71 ± 0.05	World's Best !
⁸² Se	932	2996	9.6 ± 1.0	World's Best !
⁹⁶ Zr	9.4	3350	2.35 ± 0.21	World's First (N2) & Best !
⁴⁸ Ca	7	4272	4.4 ± 0.6	World's Best !
¹¹⁶ Cd	7.49	2814	2.8 ± 0.3	World's Best !
¹³⁰ Te	454	2528	70 ± 14	World's Best & First (Direct) !
¹⁵⁰ Nd	37	3371	0.9 ± 0.07	World's Best !

Double-Beta Decay of ¹³⁰Te

Arnold et al. 2011

 $\label{eq:starses} \begin{array}{l} {}^{130}\text{Te} \\ 454 \text{ g} \times 3.5 \text{ y} \\ T_{1/2} = 7.0 \pm 1.4 \times 10^{20} \text{ years} \\ \text{half-life} > 10 \text{ billion} \times \text{ age of universe } ! \\ \text{First high precision direct measurement of this lifetime.} \end{array}$

Geochemical measurements :

- Measure integrated decay rate via abundance of daughter isotope
- Small M, large T

Bernatowicz et al. 1993

Sample Age \approx 1.6 billion years T_{1/2} \approx 30 × 10²⁰ years

Native Te (Colorado)

AuTe₂ (Colorado) Sample Age \approx 28 million years T_{1/2} \approx 9 × 10²⁰ years

> Te Foil (LSM Lab) Sample Age ≈ 0 T_{1/2} $\approx 7 \times 10^{20}$ years

Time-varying decay rate ??

 $\begin{array}{c} \text{Sensitive test of} \\ G_{\text{F}}(t) \end{array}$

$0\nu\beta\beta$ Search with NEMO-3

SuperNEMO : Road Map

NEMO-3 Dismantling

SuperNEMO : How to Get There ?

SuperNEMO Demonstrator Module : Overview

Build a 2000 channel Geiger-mode tracking detector :

- Must reconstruct β -electron tracks with high efficiency and resolution.
- Must contribute zero background in the $0\nu\beta\beta$ analysis \rightarrow ultra-pure materials only.
- Must be impermeable to the diffusion of radon into the gas volume → gas-sealing
- Robotic construction for accuracy, cleanliness and mass-production capability.
- Electronics, cabling, gas-system & software.

Tracker Production

Each cassette is transferred to a testtank for burn-in and testing.

automatically April 2013.

Cassettes are now routinely passing all production quality requirements.

Tracker Frame

Tracker Cell Insertion

Low Background Measurements

- Radon concentration in ordinary air is 10-100 Bq/m³
- We need to be able to measure concentrations down to 0.1 mBq/m³ : 100,000 times smaller.
- Latest results indicate that we have achieved the required sensitivity.

Radon Concentration Line Sensitivity

SuperNEMO : Timeline

Next-generation ⁷⁶Ge experiment

- Best way to directly check KKDC claim (no NME uncertainties)
- ► Location : Gran Sasso

-

Cu "mini-shroud" to prevent drift of ⁴²K⁺ ions onto Ge diodes

GERDA

Enriched Xenon Observatory

- Liquid-xenon TPC with ionisation & scintillation readout
- Fiducial mass of 79.4 kg of ¹³⁶Xe for the $0\nu\beta\beta$ search.

Comparison of Recent Limits

Timescales

• Currently running/planned experimental phases, reaching $< m_v > \sim 100 \text{ meV}$

Selected Experiments Only

Summary

Summary

- We are compelled to search for $0\nu\beta\beta$: it is the only way to address fundamental questions in neutrino physics.
- Several next-generation experiments are under construction, using a variety of techniques that span the [mass/background] space.
- Strengths of the SuperNEMO approach are :
 - Comparable sensitivity to other experiments for much smaller isotope masses.
 - Isotope flexibility : if any ton-scale experiment discovers a signal, then SuperNEMO with few(100) kg can feasibly explore the signal with several different isotopes.
 - In the event of a discovery, a tracking experiment is by far the best approach to determine the mechanism of neutrinoless double-beta decay.
- Construction of the SuperNEMO Demonstrator Module is well advanced.

