
D. Milstead

Stockholm University

n n
?

π

π π

A search for free      oscillations at the ESSn n→

π

π



Why baryon number violation ?



• Baryon number is not a ”sacred” quantum number

– Approximate conservation of BN in SM 

• ”Accidental” global symmetry at perturbative level

– Depends on specific matter content of the SM

• BNV in SM by non-perturbative processes

–Sphalerons

– B-L conserved in SM, not B,L separately.  

– Generic BNV in BSM theories, eg, SUSY.  

– BNV a Sakharov condition for baryogenesis

Why baryon number violation ?



?n n→Why   



n n→   
• Theory

• Baryogenesis via BNV (Sakharov condition)

• SM extensions from TeV mass scales scale-upwards

• Complementarity with open questions in neutrino physics

• Experiment

• One of the few means of looking for pure BNV  

• Stringent limit on stability of matter



Neutron oscillations – models
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  Back-of-envelope dimensional reasoning:

6 q operator for  TeV

  -parity violating supersymmetry 

  Unification models:  10  GeV

  Extra dimensions models

  Post-sp
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High precision  search
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Extend sensitivity in RPV-SUSY
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RPV-SUSY – TeV-scale sensitivity

Arxiv:1602.04821 (hep-ph)
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Neutrinoless -decay

Eg seesaw mechanism for light 
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Eg Unification models
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⇔Neutrino physics   neutron oscillations

2 -n n B Lβ ⇔ →Neutrinoless -decay   linked under  violation.

Eg Left-right symmetric models.



Neutron oscillations – an experimentalist’s view
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Hypothesis: baryon number is weakly violated.

How do we look for ?

Single nucleon decay searches, eg,  ?

 -violation, another (likely weakly) violated quantity. 

Decays without leptons, eg, ,

BNV

n n BNV

n

π π+

→

 impossible due to angular momentum 

conservation.

Nature may well have chosen   albeit with few processes to observe it.   

 and dinucleon decay searches sensitive to -only processes.

Free n→ ⇒ searches  cleanest experimental and theoretical approach.
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New experiment: 

 sensitivity yrs

Discovery or new stringent limit on stability of matter.
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 MeV  mixing physics

  ;  

Two interesting cases:

 Free neutron oscillation  

 Bound neutron
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Searching with bound neutrons
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   MeV . 

Suppression: 

Best current limits (SuperKamiokande)  >2.5 10  s

Irreducible bg's prevent large improvements.

Model-dependent (nuclear interactions).

Nuclear disintegration after neutron oscillation

n n
n n→ n N+ + π’s+ 



Free neutron search at ILL
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Institute Laue-Langevin (Early 1990's).

Cold neutron beam from 58MW reactor.

130 m thick carbon target

Signal of at least two tracks with  MeV

 candidate events,  background.
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The European Spallation Source
High intensity spallation

neutron source

Multidisplinary research centre

with 17 European nations 

participating.

Lund, Sweden.

Start operations in 2019.

2 GeV protons (3ms long pulse, 

14 Hz)  hit rotating  tungsten 

target.

Cold neutrons after interaction 

with moderators.



The European Spallation Source

22 instruments/experiments with 

capability for more.

∼



Overview of the Experiment
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Sensitivity = free neutron flux at target

  Cold neutrons ( <5 meV, <1000ms

  Low neutron emission temperature (50-60 K) 

  Supermirror transmission and transit time

  Large beam port opt
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ion, large solid angle to cold moderator.

Increase in sensitivity for   10  compared to previous experiment (ILL)

  Neutron guiding, larger opening angle, higher flux, particle ID technologies, running time.
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Top 
view

side 
viewTungsten 

target
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ESS moderators will be of “butterfly” design

• Increase cold yield

• Convenient beam extraction 

Additional challenge for nnbar which could 

benefit from extracting neutrons from all 

four visible cold surfaces

• Conventional point-to-point focusing of a 

cold neutron beam using ellipsoidal 

mirrors inefficient. 

• Ongoing studies on neutron optics

Neutronics (1)

cold

cold cold

cold
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Neutron supermirror
Smooth surface Supermirror

=Critical angle for total

     internal reflection 
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Need efficient focusing and minimal interactions

(each interaction "resets the -clock")n
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Commercial supermirrors
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Commercial supermirrors with 

Acceptance for straight guide 

ILL experiment used  neutron optics.

Increase from use of focusing reflector and optimised mirror arrays.

Crucial contribution to incr
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ease of sensitivity wrt ILL.
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The need for magnetic shielding
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Degeneracy of  broken in B-field due to 

dipole interactions:  

Flight time 1s

For quasi-free condition 

nT and vacuum 10  Pa. 
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Shielding
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 Magnetic shielding for flight volume

   nT, 10 mbar

 Aluminium vacuum chamber

 Passive magnetic shield from magnetizable alloy

  External coils for active compensation

 Background studied by tu B
�

rning on/off -field.



Maybe shielding isn’t needed

Interesting discussion in the literature.



Overview of the Experiment
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(4) Detector
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Expect  at  GeV.

Detector design for high efficiency 

and low bg .

  Annihilation target -  carbon sheet 

 Tracker - vertex reconstruction 

 Time-of-flight system 

   - scintillators aro
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und tracker.

 Calorimeter

   -  lead + scintillating and clear fibre.

 Cosmic veto - plastic scintillator pads   

 Trigger  -   Track and cluster algorithms 

•

•

•

Neutron 
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Target 
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Tracker

Calorimeter

Vacuum

TOF

Cosmic 

veto
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GENIE: NNBar Final State Primaries

A. R. Young, D. G. Phillips II, R. W. Pattie Jr.6/13/14

Final State Pionic Mode Nevents % Total

π+π-2π0 530 10.60%

2π+π-π0 486 9.72%

π+π-π0 417 8.34%

2π+π-2π0 409 8.18%

π+π-3π0 329 6.58%

2π+2π-π0 315 6.30%

π+2π0 290 5.80%

π+3π0 219 4.38%

π+π-ω 145 2.90%

π+π0 137 2.74%

π+2π-π0 132 2.64%

2π+2π- 124 2.48%

GENIE-2.0.0: intranculear propagation based on INTRANUKE
C.Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl.Instrum.Meth.A614:87-104,2010.

Final state list prepared by R. W. PattiePreliminary
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Energy Threshold Acceptance (Signal)

ILL Trig. 

Thresh.

6/13/14 A. R. Young, D. G. Phillips II, R. W. Pattie Jr.



Annihilation event 



Collaboration and approximate timescales
Several workshops (CERN, Lund, Gothenburg) 

Collaboration formed – interim spokesperson G. Broojimans

Expression of Interest submitted to ESS. 

Signatories from 26 institutes , 8 countries.

Sweden: Stockholm, Uppsala, Lund, Chalmers.

More collaborators are welcome!

ESS nn

Commissioning,

Intensity ramp,

early experiments

Initial user program 

Routine operations

2019

Construction,

commissioning,

early data-taking

2023

Physics runs

2026

End run,

complete analysis



Particle Physics Strategy

Consensus in the field is to pursue experiments with unique

capabilities and physics reach.



Summary

• The search for neutron-antineutron oscillations addresses open

questions in modern physics.

• An experiment at the ESS offers a new opportunity to extend

sensitivity to neutron oscillation probability by several orders 

of magnitude and set a new limit on the stability of matter.

• Collaboration formed and EOI submitted

• Provisional schedule made.





Potential gains

Factor Gain wrt ILL

Brightness

Moderator temperature

Moderator area 2

Angular

acceptance/neutron 

transmission

40

Length 5

Run time 3

Total

1≥

1000≥

1≥
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Baryon number violation searches
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BNV searches

L and B violated

B violated

RPP

Poor experimental coverage of ”pure” B violation tests 
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Single nucleon decay

Eg unification models
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Neutrinoless -decay

Eg seesaw mechanism for light 
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Complementary searches for  and BNV LNV

-

Each search tests complementary conservation laws.

Neutrinoless double -decay   linked under  violation.

Eg Left-right symmetric models.
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