CMS: Today, Tomorrow and the Next Decade

Dave Newbold – University of Bristol

University of Birmingham, March 2013

"You are Here"

CMS: Today, Tomorrow and the Next Decade

CMS Goals and Design

- General-purpose detector for LHC
 - Wide range of energy frontier and heavy ion physics
- Comprehensive programme
 - EWSB & TeV-scale physics
 - Direct BSM searches
 - (Some) QCD & flavour
- Detector characteristics
 - Hermetic, high-resn calorimetry
 - Including precision crystal calorimeter
 - Highly redundant muon system
 - Highly redundant, high coverage, inner tracking
 - All-silicon system, pixels + strips
 - Flexible L1 and high-level trigger systems
 - We retain only around one per 100k crossings trigger dictates physics reach
 - Durability, maintainability and rad hardness (20 year program)

CMS Layout

Computing system

UK = Bristol + Brunel + Imperial + RAL PPD (~60 PhDs)

Lowering

Five Years Ago

CMS Programme

Alignment, commissioning

2000

QCD, calib, MC tune

First W / Z; energy scale

First top W', Z' search; first SUSY Higgs, TeV-scale SUSY

2011

University of BRISTOL

?

The Killer LHC Problem: Data-Handling

- 'Raw' data rate in experiment is ~40TB/s
 - Or 400 Exabytes per year a stack of DVDs to the moon
- Heavy filtering is required
 - Level-1 Trigger (hardware): 40MHz -> 100kHz evt rate in real time (1us)
 - HLT (CPU farm): 100kHz -> 300Hz evt rate in real time (10ms)
 - Offline filtering and selection
- General trigger strategy at Level-1
 - Filter using coarse-grained calorimeter and muon data only
 - Identify leptons (e, μ , τ), γ , high-Et jets, total and missing energy
 - Impose transverse momentum thresholds to reduce QCD background
 - Trigger on several possible combinations of selected objects
- Trigger dictates physics reach of the experiment
- Offline handling of data is a 50MCHF per year project

Commissioning

LHC Performance

- LHC ramp-up is remarkable and unprecedented
 - ▶ Increasing inst. lumi. ⇒ continuous re-optimisation of trigger, detector
 - Currently operating at > 7e33Hz/sqcm (LHC design lumi: 1e34)
 - But: 50ns bunch spacing: \Rightarrow 35 overlapping events (CMS designed for ~25)
 - Hoping for 25-30/fb by end of 2012 run

Typical 2012 Event

 Trigger rates & offline reconstruction time increase non-linearly with pileup levels

CMS Performance

- Exceptional data-taking efficiency
- Most downtime now due to external 'technical incidents'
 - Power loss, cooling loss, etc
- Safety systems 100% reliable so far
 - 3GJ stored in the CMS magnetic field...

Month of July 2012

Detector Challenges

- Rare, but significant, calorimeter noise events
 - ECAL: 'Spikes' at a low rate, but with extremely large signal
 - Fixed with a combination of online processing (trigger) and offline cuts
 - HCAL: 'Pattern' noise in photodetectors, uncorrelated with event activity
 - FCAL: Spikes caused by Cherenkov light in passive materials
- Buffer overflows in pixel readout system

Physics Publications

- Quantity has not been allowed to override quality
- All results: <u>http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

SM Electroweak Tests

Higgs Boson

Summary numbers

- $m_H = 125.8 \pm 0.5(stat) \pm 0.2(sys)$ GeV dominated by 41 channel
- Combined significance: 6.7 s.d. (7.2 expected)
- $\sigma / \sigma_{SM} = 0.91 \pm 0.3 \text{dominated by 2l2nu channel}$
- ~ 700 direct CMS analysis contributors to July 2012 results

Higgs Boson

Dave.Newbold@cern.ch

- Appears that we have a good old-fashioned SM Higgs boson
 - Of course, it may have friends (high-mass H_{SM-like} search public this week)

Higgs: Spin-Parity

30

30

Yellow: 0+ hypothesis

Blue: alternative s-p assignment

Red marker: CMS measurement

	<u>Expected [σ]</u>		Observed (μ from data)		
	μ=1	μ from data	P(q > Obs alternative) [σ]	P(q > Obs SM Higgs) [σ]	CLs [%]
gg → o [.]	2.8	2.6	3-3	-0.5	0.16
$gg \rightarrow o_{h}^{+}$	1.8	1.7	1.7	+0.0	8.1
$q\underline{q} \rightarrow 1^+$	2.6	2.3	> 4.0	-1.7	< 0.1
q <u>q</u> →1 [.]	3.1	2.8	> 4.0	-1.4	< 0.1
$gg \rightarrow 2m^+$	1.9	1.8	2.7	-0.8	1.5
$qq \rightarrow 2m^+$	1.9	1.7	4.0	-1.8	< 0.1

SUSY: Channels

Panoply of channels, covering wide range of phenomenology

Slide by S-A Koay

20

SUSY cMSSM Limits

Old news...

The hunt has now turned to model-independent searches

Alternative Approaches

Only worry about what matters!

- 0-lepton search summary
 - Colour scale represents upper limit on cross-section (pb)
 - Assumes 100% BR
 - $m_{gluino} > 1125 GeV$
 - $m_{LSP} > 650 GeV$
- 14TeV data needed

- Where now?
 - Move towards 'natural SUSY'
 - Focus on third-gen decays, including small mass splitting / heavy gluino scenarios

University of

Exotica Overview

The graveyard

(Mass or Λ limit)

Dave.Newbold@cern.ch

University of BRISTOL

Exotica Searches

Exotica: Stopped HSCPs

of stopped undecayed particles

- Dedicated trigger for stopped
 R-hadrons in CMS calorimeter
- Run in gaps / stops / shutdowns
- Sensitive over 13 OoM lifetime

Data taking time

LHC Evolution

CMS Upgrade Motivation

- LHC is the energy frontier
 - ... for the foreseeable future
 - Lifetime of apparatus is finite
 - Increase in reach with stats falls away
- The problem
 - How will the physics unfold?
 - Original design / build took ten years
- Some guiding principles and lessons
 - All-hadronic / MET signals will likely become buried
 - Third-generation objects will continue to be important
 - Capability for SM measurements must be maintained
 - Inclusive high-mass searches will continue, no matter what
 - Trigger performance (mainly at L1) is *the* key issue
 - Energy scale of final state objects still set by ESB scale and W, Z mass
 - Compromises between pileup and increased stats need to be carefully examined

H properties & couplings

Fine-tuning mechanism? Or not?

SUSY spectrum measurements?

High mass GUT signals (Z', KK)?

Long-lived particles?

Huge stats required in each case

Muons to 2020

Performance improvements & trigger / tracking robustness against high luminosity

HCAL to 2020

- Replacement of noisy HPDs, addition of depth segmentation to combat light loss
- Adds robustness for both trigger and offline analysis

Pixel Upgrade: 2017

- Pixels can be replaced independently of inner detector
 - Additional 4th barrel / 3rd e.c. layer; CO2 cooling; fully digital readout
 - UK contribution: upgrade of the entire readout and control system

LI Performance at High Pileup

BRISTOI

LI Rate Predictions

	8 TeV 7E3	3 ~25 PU	14 TeV 2E34 50 PU	
Algorithm	Thresh (GeV)	Rate (kHz)	Thresh (GeV)	Rate (kHz)
Single EG	22	10	46	10
Single IsoEG	18	9	31	9
DoubleEG	13, 7	9	22, 12	9
Single Muon	16	9	50	9
Dble Muon	10, open	5	35, open	5
EG+Mu	12, 3.5	3	21, 6	3
Mu+EG	12, 7	2	25, 15	2
SingleJet	128	2	188	2
DoubleJet	56	10	132	10
QuadJet	36	2	→ 96	10
Double Tau	44	2	56	2
MET	36	7	84	7
HTT	150	2	511	2

Performance of current (non-upgraded) system at 50PU

Estimates from combination of high-PU data and simulation

Parallel Trigger Systems

- Split detector data
 - Passive splitters before buffers for HCAL; dual optical outputs for ECAL
- Run parallel trigger systems
 - Commission new trigger in 2015; switch is purely a software change

UK Upgrade Plans: LI Trigger

- Maintain or improve L1 performance at high PU
 - Use *full* detector data today; more from upgrade muons, HCAL, later
- Time-multiplexed concept for L1 calorimeter trigger
 - Allows much greater flexibility, redundancy, cross-subsystem algorithms
 - Paves the way for inclusion of tracking information later on

System Design

- Classic two-layer system
- Layer-1
 - Data reformatting / reduction
- Layer-2
 - Object identification, sorting
- Inputs
 - oSLB inputs from ECAL
 - uHTR inputs from HCAL / HF
 - Spare capacity for future inputs
- Outputs
 - Trigger objects to GT
 - Monitoring data to DAQ via one AMC13 per crate

UK Upgrade Plans: Hardware Development

- MP7 card is the building block for L1 and pixel systems
 - Large Virtex-7 series FPGA (700k logic cells); 144Mb fast RAM
 - 1.4Tb/s of low-latency IO on optical links; 50Gb/s backplane IO
 - Fully integrated into uTCA software / hardware environment
- Variety of trigger / DAQ architectures can be constructed
 - STFC funds now allocated for full L1 upgrade hardware by 2015
 - New L1 commissioning *in parallel* with existing system during 2015 run

Conditions after LS3

• HI runs give a forward look at ~10^35 conditions

- Good: tracking, calorimetry, EWK boson ID, are all possible
- Bad: trigger algos ineffective, event size huge, vertexing difficult

Central collision in 2010 HI run

Phase 2: Tracker

- Complete inner tracker replacement
 - Tenfold improvement in granularity to cope with >10^35 luminosity
 - Key issues are powering & cooling; readout; material budget; triggering

Phase 2: Track Trigger

"Stacked tracking" (short strips) an R&D focus - early stages

Trigger output from modules is a fixed-length list of identified stubs

Module Prototypes

'Double strips' module now becoming a technical reality
v2 of readout ASIC (UK) now in hand; beam tests in 2013 & 14

Thermal conductivity (W/

CMS: Today, Tomorrow and the Next Decade

Phase 2: Track Trigger

"X-ray" hit positions of three-stack trigger geometry with endcaps

Turn-on curve for endcap stub finding (disk0, 2mm stack, n_phi=1, n_r=1)

Trigger track objects in three-stack geometry (Fireworks plot of H->Z->4µ)

Trigger track finding algorithm pt reconstruction (single muons, gen vs trigger pt)

Conclusions

- An excellent start to the LHC programme
 - Accelerator performing beyond expectations
 - CMS detector is reliable and above expected performance
 - No serious technical issues so far but much care and planning needed
- Physics
 - The first major discovery made ahead of time!
 - A huge programme of detailed work unfolds before us
 - The 'attack on naturalness' is a primary topic for 2012/13
 - The pace of work will not slacken during the shutdown
- Upgrades
 - Progressive upgrades to key CMS subsystems much to do in LS1
 - L1 trigger probably the most important and challenging area
 - Must maintain the capability for a broad range of physics
- The real work starts here...

