

BSM lessons from flavor

Dario Buttazzo

Particle physics seminar — University of Birmingham — 4.11.2020

Physics at long distances

✦ Ignore the short-distance details (degrees of freedom)

Law of physics become simpler

+

Accidental symmetries

credits: R. Rattazzi

Physics at long distances

✦ Ignore the short-distance details (degrees of freedom)

Law of physics become simpler

SO(3) symmetry

 \bullet

+ Accidental symmetries

credits: R. Rattazzi

Physics at long distances

Ignore the short-distance details (degrees of freedom)

Law of physics become simpler

SO(3) symmetry

+ Accidental symmetries

Example: electrostatic potential at long distances

credits: R. Rattazzi

The Standard Model EFT

The SM is an Effective Theory valid up to a scale Λ; expansion in E/Λ

$$
\mathcal{L}_{\rm SM} = \mathcal{L}_{d\leq 4} + \frac{1}{\Lambda} \mathcal{L}_{d=5} + \frac{1}{\Lambda^2} \mathcal{L}_{d=6} + \cdots
$$

• d = 4:
$$
\mathcal{L}_{kin} + gA_{\mu}(\bar{\psi}\gamma^{\mu}\psi) + Y_{ij}H\bar{\psi}^{i}\psi^{j} + \lambda|H|^{4}
$$

the "spherical cow": renormalizable SM Lagrangian, accounts for all what we see! *Accidental symmetries of SM:* B, L, custodial SO(4)

$$
\bullet \quad \mathsf{d=5:} \quad \frac{b_{ij}}{\Lambda}L_iL_jHH
$$

$$
\bullet \quad d=6: \quad \frac{c}{}
$$

✦ …

$$
\frac{c_{ijkl}}{\Lambda^2} \psi_i \psi_j \psi_k \psi_l + \frac{c_{ij}}{\Lambda^2} (\psi_i \sigma_{\mu\nu} \psi_j) F^{\mu\nu} + \cdots
$$
\n(the head tail)

(the head, tail, horns of the cow…)

Flavor is crucial!

The "spherical cow"

- I. The SM is valid up to $\Lambda \gg m_W$
	- $\textcolor{red}{\star}$ Neutrino masses determined by dim. 5 term $\textcolor{red}{\mathcal{L}_5}=$ b_{ij} $\frac{\partial^2 U}{\partial \Lambda} L_i L_j H H$

very high scale $\Lambda \sim 10^{14}$ GeV explains why $m_v \ll m_{q,1}$

All other physical effects much more suppressed (dim. 6 operators):

B, L automatically conserved

Flavor in agreement with CKM

Agreement with all experiments! (but we'll never see anything new)

however… indications that this might not be the correct picture

The hierarchy paradox

The only dim. 2 term in the Lagrangian: Higgs mass

$$
\mathcal{L} = c_2 \Lambda^2 |H|^2 + \mathcal{L}_4 + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots
$$

1. EW scale expected of order Λ, unless c₂ suppressed by some symmetry *(no such symmetry in SM)*

- 2. Higher dimension terms could be small for other reasons:
	- Dim. 5: neutrino mass violates L
	- Dim. 6: maybe complex flavor structure / flavor symmetries

Need to complicate the theory: impose symmetries, model building

☞ But flavor exists! We'll need to find an explanation anyway, at some point…

The importance of precision measurements

Rare (flavor) processes are the ideal place to look for New Physics!

$$
\mathcal{L}_{\rm SM+NP} \xrightarrow{E \ll m_W} \mathcal{L}_{\rm eff} = \sum_{i} \mathcal{O}_i \left(\frac{C_i^{\rm NP}}{\Lambda^2} + \frac{C_i^{\rm SM}}{v^2} \right)
$$

usually suppressed by loops & CKM factors

Several examples of great indirect discoveries in the past:

- \triangle Small K_L \rightarrow µµ branching ratio: existence of charm (GIM) Glashow, Iliopoulos, Maiani 1970
- Frequency of K-K oscillations: prediction of charm mass Lee, Gaillard 1974
- ✦ CPV in K system: existence of 3rd generation

Kobayashi, Maskawa 1973

late 1990's

- Frequency of B-B oscillations: prediction of large top mass late 1980's
- (ElectroWeak Precision Tests: prediction of Higgs mass)

c

Flavor symmetries

Insisting on $\Lambda \sim$ TeV requires a suppression of FCNC by means of **symmetries**

$$
\mathcal{L}_{\textrm{eff}} = \sum_i \mathcal{O}_i \left(\frac{C_i^{\textrm{NP}}}{\Lambda^2} + \frac{C_i^{\textrm{SM}}}{v^2} \right)
$$

In the SM, the only source of flavor $\; C_{i\rightarrow j}^{\rm SM} \approx Y_{ik} Y_{jk}^*/16\pi^2$ transitions are Yukawa couplings

In the limit $Y \rightarrow 0$, the SM has an exact *flavor symmetry*

 $SU(3)_a \times SU(3)_u \times SU(3)_d \times SU(3)_e \times SU(3)_e$ **broken by Y***u*,*d*,*e*

✦ Maximal amount of suppression: NP also breaks symmetry **only with Y**

 $C_{i\rightarrow j}^{\text{NP}} \approx Y_{ik}Y_{jk}^*$ NP with CKM-like flavor structure

 $\Lambda^2 \approx (4\pi v)^2 \times (\Delta \mathcal{O}/\mathcal{O}) \approx \text{few TeV}^2$ **Minimal Flavor Violation**

U(2) symmetry

SM quark Yukawa couplings exhibit an approximate U(2)³ flavour symmetry:

Good approximation of SM spectrum: $m_{light} \sim 0$, V_{CKM} ~ 1

Breaking
pattern:
$$
Y_{u,d} \approx \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
$$
 $Y_{u,d} \approx \begin{pmatrix} \Delta & V_q \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} \Delta \sim (2,2,1) \\ V_q \sim (2,1,1) \end{pmatrix}$

Barbieri, B, Sala, Straub, 2012

- ✦ The *assumption* of a suitable breaking ensures MFV-like FCNC protection
- ✦ The most general symmetry that gives **"CKM-like" interactions** in a modelindependent way Barbieri, B, Sala, Straub, 2014
- \blacklozenge Can be extended to charged lepton sector $(\mathrm{U}(2)_\ell \times \mathrm{U}(2)_e)$ $m_\ell \sim (\textcolor{red}{\cdot} \cdot \textcolor{red}{\cdot} \cdot \textcolor{red}{\cdot} \cdot)$

Rare decays

What energy scales can be probed through B physics, *under the most restrictive flavor assumptions (MFV / U(2))?*

Example: heavy Z' with flavour-violating *bs* coupling

Bs mixing can probe mass scales up to \sim 10 TeV (for coupling \sim V_{cb})

$$
\Delta M_s \approx \left(g_{bs}^2/\Lambda^2 \right)
$$

Rare decays (e.g. $B_s \rightarrow \mu\mu$) almost competitive at high luminosity

 $\mathcal{A}(B_s \to \mu^+ \mu^-) \approx \left(g_{bs}/\Lambda^2\right) \times g_{\mu\mu}$

A natural example: Composite Higgs

The Higgs could be composite, due to new strong interaction at $\Lambda \sim \text{TeV}$

EW scale dynamically generated when $g_* \rightarrow 4\pi$

Naturally light if it's a (pseudo-)Goldstone boson

Like the pion in QCD!

When
$$
g_* \to 4\pi
$$
, $\langle \bar{\Psi}^i \Psi^j \rangle = -f^2 B_0 \delta^{ij}$
breaks a global symmetry $G \to H$

"pion" decay constant

- Modification of Higgs properties $\sim v^2/f^2$
- \rightarrow Other composite resonances with mass m_p ~ g_{*}f < 4 π f (analogous of ρ meson, nucleons, …)

Flavour bounds in Composite Higgs

 \triangleleft SM quarks interact with the strong sector (Higgs) \Rightarrow large flavor effects!

- Natural suppression: interaction through Yukawa couplings
- Usually not enough: need flavor symmetry

Table 8: Minimal fermion resonance mass *mass Barbieri*, B, Sala, Straub, Tesi 1211.5085

Future projections

Significant improvement in flavor measurements in the next (few) years!

Will flavor bounds on NP scale compete with a next-generation collider?

- ‣ Higgs factory precision on h couplings $(-10^{-3}, i.e. f > 8$ TeV)
- ‣ direct searches at 100 TeV (roughly $M > 10$ TeV)

projections for LHCb 300 fb-1 & Belle II

O(10 y) timescale!

work in progress with L. Vittorio

Lepton Flavor Universality

The B-physics anomalies

FCNC: only at loop-level in SM

Deviation from SM in several observables: $R_K(*)$, P_5' , various BR's ϵ

The B-physics anomalies

Lepton Flavour Universality: a remark

✦ (Lepton) flavour universality is an accidental property of the gauge Lagrangian, not a fundamental symmetry of nature

$$
\mathcal{L}_{\text{gauge}} = i \sum_{j=1}^3 \sum_{q,u,d,\ell,e} \bar{\psi}_j \rlap{\,/}D \psi_j
$$

✦ The only non-gauge interaction in the SM violates LFU maximally

$$
\mathcal{L}_{\text{Yuk}} = \bar{q}_L Y_u u_R H^* + \bar{d}_L Y_d d_R H + \bar{\ell}_L Y_e e_R H \qquad Y_{u,d,e} \approx \text{diag}(0,0,1)
$$

✦ LFU approximately satisfied in SM processes because lepton Yukawa couplings are small

$$
y_{\mu} \approx 10^{-3} \qquad \qquad y_{\tau} \approx 10^{-2}
$$

natural to expect LFU and flavour violations in BSM physics

Is it possible to explain the whole set of anomalies in a coherent picture?

What do we know?

- 1. Anomalies seen only in semi-leptonic processes: **quarks** x leptons nothing observed in pure **quark** or *lepton* processes RA and the same particular current of the parties of the second to the control of the second of the current operator α
- 2. Large effect in 3rd generation: b quarks, *τν* competes with SM tree-level smaller non-zero effect in **2nd generation**: $\mu\mu$ competes with SM FCNC, no effect in 1st generation **states with SM FC** Large coupling (competing with SM tree-level) in bc (=33CKM) → *l*3 ν3 \overline{M} tupe level and the e-teach
- 3. Flavour alignment with down-quark mass basis **nent** with down-qu *bL up to CKM rotations of* O(Vcb)

to avoid large FCNC (true in general for BSM physics)

4. Left-handed four-fermion interactions frondotions

RH and scalar currents disfavoured: can be present, but do not fit the anomalies (both in charged and neutral current), Higgs-current small or not relevant

EFT explanations of flavour anomalies

The two processes are related by $SU(2)_L$ gauge symmetry

$$
\frac{1}{\Lambda^2_{\text{singlet}}} (\bar{q}^i_L \gamma_\mu q^j_L)(\bar{\ell}^\alpha_L \gamma^\mu \ell^\beta_L) + \frac{1}{\Lambda^2_{\text{triplet}}} (\bar{q}^i_L \gamma_\mu \sigma^a q^j_L) (\bar{\ell}^\alpha_L \gamma^\mu \sigma^a \ell^\beta_L) \quad \overset{\text{triplet operator}}{\text{can explain both!}}
$$

II. NP structure reminds of the Yukawa hierarchy: $\Lambda_D \ll \Lambda_K, \qquad \lambda_{\tau\tau} \gg \lambda_{\mu\mu}$ large coupling to 3rd generation, couplings to light generations suppressed

\n- Direct **gearches:** large signal at high-pT
\n- Δ_L ≈ 3.4 TeV
\n- Flavour observables:
\n- 2.
$$
\overline{t}_L \overline{y}_L
$$
 × t × t

 $\begin{aligned} \text{Table I:} \quad & \text{A set of simplified models g} \\ \text{stition at tree level, classified accordi} \end{aligned}$ α and α color. Table I: A set of simplified models generating $b \to c\tau\nu$ transition at tree level, classified according to the me**dia**tor spi and color. sition at tree level, classified according to the mediator spi and color. A set of simplified models generating $b \to c\tau\nu$
ree level, classified according to the mediator 1606.00524,1705.00929
20 If simplified models generating b – $\;$ vel, classified according to 20

ł,

Fit to semi-leptonic observables

- \div EFT fit to all semi-leptonic observables $+$ radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

²¹ *Good fit to all anomalies, with couplings compatible with the U(2) assumption*

Fit to semi-leptonic observables

- \div EFT fit to all semi-leptonic observables $+$ radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

Good fit to all anomalies, with couplings compatible with the U(2) assumption 22

Relation to other observables: neutral currents

credits: G. Isidori

the presence of RH/scalar currents breaks the correlation with the SM: e.g. $B \to \mu\mu$, $B \to \tau\tau$, $B \to \tau\mu$ could be enhanced 23

Relation to other observables: neutral currents

Several correlated effects in other flavour observables. High-intensity program *is crucial* to test the flavour structure!

Relation to other observables: neutral currents

Several correlated effects in other flavour observables. High-intensity program *is crucial* to test the flavour structure!

$K \rightarrow \pi v v$

- The only $s \rightarrow d$ decay with 3rd generation leptons in the final state (v_t) : ✦ sizeable deviations can be expected
- $U(2)$ symmetry relates $b \rightarrow q$ transitions also to $s \rightarrow d$ but there are model-dependent parameters of order 1 (rotation in sd sector):

 $\lambda_{sd} \sim V_q V_q^* \sim V_{ts}^* V_{td} \quad \lambda_{bq} \sim V_q \sim V_{tq}^*$

b → cτv: mediators

Mediators that can give rise to the LH $b \rightarrow c \ell v$ and $b \rightarrow s \ell \ell$ amplitudes:

A composite UV completion: scalar leptoquarks

✦ New strong interaction that confines at a scale Λ ~ few TeV

 Ψ $\bar{\Psi}$ new (vector-like) fermions $\langle \bar{\Psi}^i \Psi^j \rangle = -f^2 B_0 \delta^{ij}$ breaks a global symmetry \longrightarrow Goldstones

If the fermions are charged under SM gauge group, then also the pseudo Nambu-Goldstone bosons have SM charges:

Goldstones naturally light and couple to fermions

B, Greljo, Isidori, Marzocca 2017 ➡ Marzocca, 2018

Heavier vector resonances (with the same quantum numbers)

A different example: light New Physics

EFT description does not work if there are light new particles!

$$
\mathcal{L}_{E<\Lambda} \ \neq \ \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_{d=5} + \frac{1}{\Lambda^2} \mathcal{L}_{\mathrm{d}=6} + \cdots
$$

Need to be very weakly interacting, otherwise already seen

Example: light pseudo-scalar a (also called ALP) coupled to SM

$$
\mathcal{L}=c_f\frac{\partial_\mu a}{\Lambda}(\bar{f}\gamma_\mu\gamma_5 f)+c_{\gamma\gamma}\frac{a}{\Lambda}F_{\mu\nu}\widetilde{F}^{\mu\nu}
$$

goldstone boson of some broken symmetry

same as a neutral pion!

µ

Flavor bounds on invisible particles

Very strong constraints from various flavor (and other) experiments!

Model: couplings only to leptons

- Consider coupling to leptons only Flavor & collider constraints become weaker (but not absent!)
- ✦ Add a coupling to fermionic DM χ

$$
\mathcal{L}=c_{\chi}\frac{\partial_{\mu}a}{\Lambda}(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)+c_{e}\frac{\partial_{\mu}a}{\Lambda}(\bar{e}\gamma_{\mu}\gamma_{5}e)+c_{\gamma\gamma}\frac{a}{\Lambda}F_{\mu\nu}\widetilde{F}^{\mu\nu}
$$

DM that interacts only with electrons through a pseudoscalar mediator!

see also Alves, Weiner 1710.03764

Direct Detection

 10^{-3} 10^{-38} 10^{-2} ✦ No Direct Detection constraints from 10^{-39} 10^{-3} $[cm^2]$ bb 10^{-40} CDMS_S nuclear recoil experiments section 10^{-4} nucleon cross 10^{-44} WIMP-nucleon 10^{-45} DM 10^{-10} 10^{-46} WIMPe- 10^{-47} 10^{-12} 10^{-48} 10^{-13} 10^{-49} **Nucleus** $10^{10^{-14}}$ 10^{-50} 10 100 1000 WIMP Mass $[GeV/c^2]$ 120 Only electron recoils Xenon1T coll. 100 $vents/(t \cdot y \cdot keV)$ 80 Xenon1T has observed an 60 excess of electron-recoil events 2006.09721 20 B_0 SR1 data C 3.2σ at \sim 1-5 keV σ $\overline{15}$ 20 25 5 10 30 0 35 Energy [keV]

✦ Typical explanations for the Xenon signal:

keV recoil energy

See e.g. 2006.09721 (Xenon coll.)

- ‣ Non-thermal DM, more energetic (like solar axions)
- Absorption of light DM with $m_{DM} \sim keV$
- Other rather exotic models
- Why not "standard" WIMP scattering off electrons?

Problem: maximal recoil energy for scattering off slow electrons

 $E_R \sim 2 m_e v^2 \sim eV$ too small!

for $v \sim 10^{-3}c$ (typical DM velocity in our Galaxy)

But electrons *bound in atoms* can have large momentum *p* ~ MeV!

 $E_R \sim \rho v \sim keV$

Fit to Xenon1T

Scattering amplitude $xe \rightarrow xe$

$$
\mathcal{A} = (\bar{\chi}\gamma_5\chi)\frac{g_\chi g_e}{q^2+m_e^2}(\bar{e}\gamma_5 e)
$$

 $\mathsf{couplings}\; g_{\chi,e} = 2 c_{\chi,e}/\Lambda$

We include 3s and 4s Xe orbitals

New physics scale low, limit of contact-interaction does not apply

Dark-matter mass m_x in GeV

Pseudo-scalar ionization function $K_{PS}(q) \sim K_S(q) (q/2m_e)^2$

suppressed in non-relativistic limit

■ low-energy S2-only events don't impose constraint

Bounds on the mediator

Light pseudo-scalar coupled to electrons: flavor / collider / beam dump!

0

Portions of parameter space allowed, that give good fit to the signal!

2 4 6 8 10

Electron recoil energy E_R in keV

Electron g-2

Light pseudo-scalar gives contribution to lepton g-2

$$
\Delta a_e^{\text{1loop}} = -\frac{m_e^2}{4\pi^2\Lambda^2} |c_e|^2 f(m_a^2/m_e^2) \approx 10^{-10} \qquad \text{100 x too large!}
$$

- Can be canceled with a non-zero coupling montre to photons (at the price of tuning)
- This can be achieved coupling a to just SM leptons, including μ and $\tau!$
	- Bonus: muon g-2 can also be explained 39

Model: couplings only to leptons

- Consider coupling to leptons only Flavor & collider constraints become weaker (but not absent!)
- ✦ Add a coupling to fermionic DM χ

$$
\mathcal{L}=c_{\chi}\frac{\partial_{\mu}a}{\Lambda}(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)+c_{e}\frac{\partial_{\mu}a}{\Lambda}(\bar{e}\gamma_{\mu}\gamma_{5}e)+c_{\gamma\gamma}\frac{a}{\Lambda}F_{\mu\nu}\widetilde{F}^{\mu\nu}
$$

DM that interacts only with electrons through a pseudoscalar mediator!

a composite dark sector?

low scale: building a full model might be difficult!

or an axion, or …

Flavor physics is a crucial ingredient of high-energy physics

Test high scales beyond direct reach

Even with largest flavor symmetries, competes with FCC reach (but in near future!)

New directions in model building

Leptoquarks, non-minimal composite sectors, …

Even without a discovery we learn a lot (but a discovery is better!!)

œ Backup

Rare decays: the importance of correlations

Many observables, many models

Correlations between different observables are crucial to distinguish them!

Effective Field Theory for semi-leptonic interactions

1. Left-handed semi-leptonic interactions: two possible operators in SM-EFT

2. CKM-like flavour pattern: U(2) symmetry for both quarks & leptons

i.e. coupling to third generation only: $\,Q^{(3)}_{L}\sim \left(\frac{V_{ib}u^{c}_{L}}{h}\right)^2\,$ + small terms (~ V $_{\rm CKM}$) B, Greljo, Isidori, Marzocca, 2017 $Y_u \approx$ $\sqrt{2}$ \mathbf{r} 550 $\lambda_q \approx$ $\sqrt{2}$ \mathbb{R} $5\sqrt{2}$ $\psi_i = (\psi_1 \; \psi_2)(\psi_3)$ breaking of $U(2)_{q}$ symmetry λ_i^q $i_j \approx$ $\sqrt{2}$ \overline{a} *.. . ..Vts* V_{ts}^* 1 \setminus $\lambda^{\ell}_{\alpha\beta}\approx$ $\sqrt{2}$ \overline{a} *.. .* $\frac{1}{2}$ $V_{\tau\mu}^*$ 1 \setminus A parameters relevant

for the anomalies \sum \sim $\left(V_{ib}^* u_L^i\right)$ b_L ◆ **2 1**

Effective Field Theory

$$
\mathcal{L}_{\text{eff}}=\mathcal{L}_{\text{SM}}-\frac{1}{v^2}\lambda_{ij}^q\lambda_{\alpha\beta}^\ell\left[C_T(\bar{q}_L^i\gamma_\mu\sigma^a q_L^j)(\bar{\ell}_L^\alpha\gamma^\mu\sigma^a\ell_L^\beta)+C_S(\bar{q}_L^i\gamma_\mu q_L^j)(\bar{\ell}_L^\alpha\gamma^\mu\ell_L^\beta)\right]
$$

LFU ratios in $b \rightarrow c$ charged currents:

$$
\begin{array}{ll}\n\text{7 VS } \text{1:} & R_{D^{(*)}}^{\tau \ell} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}} \right) = 1.237 \pm 0.053 \\
\text{4 VS } \text{C:} & R_{D^{(*)}}^{\mu e} \simeq 1 + 2C_T \left(1 + \frac{\lambda_{bs}^q}{V_{cb}} \right) \lambda_{\mu\mu} < 0.02 \quad \longrightarrow \quad \lambda_{\mu\mu} \lesssim 0.1\n\end{array}
$$

Neutral currents: $b \rightarrow s v_{\tau} v_{\tau}$ transitions not suppressed by lepton spurion

$$
\Delta C_{\nu} \simeq \frac{\pi}{\alpha V_{ts}^* V_{tb}} \lambda_{sb}^q (C_S - C_T) \qquad \text{strong bounds from } B \to K^* \nu \nu
$$

$$
\longrightarrow C_T \sim C_S
$$

 $b \rightarrow$ $s\tau\tau$ ~ $C\tau$ + C s is large (100 x SM), weak experimental constraints

b → *sµµ* is an independent quantity: fixes the size of $\lambda_{\mu\mu} \sim 10^{-2}$ $\Delta C_{9,\mu} = -\frac{\pi}{\alpha V^*}$ $\alpha V_{ts}^* V_{tb}$ $\lambda_{sb}^q \lambda_{\mu\mu} (C_T + C_S)$

45

Radiative corrections

Purely leptonic operators generated at the EW scale by RG evolution

Feruglio et al. 2015

• **LFU in** *τ* **decays** *τ* → *μνν* vs. *τ* → *eνν* (effectively modification of W couplings)

$$
\delta g_{\tau}^{W} = -0.084 C_{T} = (9.7 \pm 9.8) \times 10^{-4}
$$

• **2TT couplings** to

$$
\delta g_{\tau_L}^Z = -0.047C_S + 0.038C_T = -0.0002 \pm 0.0006
$$

• *Zνν* **couplings** (number of neutrinos)

 $N_{\nu} = 3 - 0.19 C_S - 0.15 C_T = 2.9840 \pm 0.0082$

(RG-running corrections to four-quark operators suppressed by the *τ* mass)

strong bounds on the scale of NP $(C_{S,T} \leq 0.02$ -0.03)

Fit to semi-leptonic observables

- \div EFT fit to all semi-leptonic observables $+$ radiative corrections to EWPT
- Don't include any UV contribution to other operators (they will depend on the dynamics of the specific model)

Good fit to all anomalies, with couplings compatible with the U(2) assumption

Testing chirality and flavour structure: charged currents

✦ LH charged currents: universality of all *b* **→** *c* transitions: **Low-energy fitted fitted in the substantial control of the**

 $BR(B \to D\tau\nu)/BR_{SM} = BR(B \to D^* \tau \nu)/BR_{SM} = BR(B_c \to \psi \tau \nu)/BR_{SM}$

U(2) symmetry: $b \rightarrow c$ vs. $b \rightarrow u$ universality

 $\text{BR}(B \to D^{(*)}\tau \nu) / \text{BR}_{\text{SM}} = \text{BR}(B \to \pi \tau \nu) / \text{BR}_{\text{SM}} = \text{BR}(B^+ \to \tau \nu) / \text{BR}_{\text{SM}}$

 $= BR(B_s \rightarrow K^* \tau \nu)/BR_{SM} = BR(\Lambda_b \rightarrow \rho \tau \nu)/BR_{SM} = ...$

 $BR(B_u \rightarrow \tau v)_{exp}/BR_{SM} = 1.31 \pm 0.27$ (UTfit 2016)

Scale of new physics

Perturbative unitarity of $2 \rightarrow 2$ scattering amplitudes sets upper limit on the scale where the theory breaks down (i.e. mass of new resonances)

$$
\frac{1}{\Lambda^2} (\bar{b}_L \gamma_\mu q_L) (\bar{\ell}_L \gamma^\mu \ell_L)
$$
 [Di Luzio, Nardeechia 2017]

$$
|\text{Re} (a_{ii}^0)^{\text{Born}}| \le \frac{1}{2} \longrightarrow \Lambda < 9 \text{ TeV}
$$

($\Lambda < 84 \text{ TeV}$ for $b \rightarrow \text{supp}$ alone)

Assumption on flavour structure: CKM-like flavour pattern for quarks & leptons

High-pT searches at LHC High-pT searches at LHC

Following with more two representative cases with more than one to represent that more than one th vector leptoquark *Uµ*, imposing *|sµ,s*⌧ *| <* 5*|Vcb|* and *C^U >* 0. In green, yellow, and gray, we show the waxaa ka dhistaatii ka dhistaatii waxaa ka dhistaatii ka dhistaatii ka dhistaatii ka dhistaatii ka dhistaatii
Markaa \mathbf{r}

A general feature of any model: large coupling to *b* and *τ* A general feature of any model: large coupling to b and τ 2 2000 (2011) regions, regions, regions, regions, representatively. **A** general feature of any model: large coupling to b and τ *QL* ⇠ *^g*² ⇤ (30)

> ➡ searches in *ττ* final state at high energy at LHC *pp* ! *^µ*⁺*µ* (31) purposes in the final dialogue ingeriors SU(3)xSU(2)L *Nothing else…* xU(1)

PDF of *b* quark small, but still dominant if compared to flavour suppression

+ s-channel resonances $\begin{array}{cccc} \star & \text{S-Channel resonances} \end{array}$ *Vector Leptoquark* 1706.07808 \leftarrow S-channel resonances

must be broad to escape searches if below \sim 2 TeV must be broad to escape searches
if belown 2 ToV • Tension (III): *High pT ditau production* F $\text{F$

✦ t-channel exchange: leptoquarks $\begin{array}{ccc} \star & \text{s-channel resonances} \ \hline \end{array} \qquad \begin{array}{ccc} \star & \text{t-channel exchange: leptoquarks} \ \hline \end{array}$

Leptoquark quantum numbers are consistent with Pati-Salam unification

 $SU(4) \times SU(2)_L \times SU(2)_R \supset SU(3)_c \times SU(2)_L \times U(1)_Y$

Lepton number = 4th color $\psi_L = (q_L^1, q_L^2, q_L^3, \ell_L) \sim (\bf{4}, \bf{2}, \bf{1}),$ $\psi_R = (q_R^1, q_R^2, q_R^3, \ell_R) \sim (\textbf{4}, \textbf{1}, \textbf{2}).$

Gauge fields:
$$
15 = 8_0 \oplus 3_{2/3} \oplus 3_{-2/3} \oplus 1_0
$$

vector leptoquark U_1^{μ}

- \blacklozenge No proton decay: protected by gauge $\; U(1)_{B-L} \subset SU(4)$
- \triangleleft U_μ gauge vector: universal couplings to fermions!
	- ➡ bounds of O(100 TeV) from light fermion processes, e.g. *K* → *μe*

UV completions: vector leptoquark

Non-universal couplings to fermions needed!

• Elementary vectors: extended gauge group color can't be completely embedded in SU(4)

 $SU(4) \times SU(3) \rightarrow SU(3)_c$

Di Luzio et al. 2017 Isidori et al. 2017

only the 3rd generation is charged under SU(4)

• Composite vectors: resonances of a strongly interacting sector with global $SU(4) \times SU(2) \times SU(2)$ Barbieri, Tesi 2017

the couplings to fermions can be different (e.g. partial compositeness)

In all cases, additional heavy vector resonances (color octet and Z') are present

Searches at LHC!

Dark Matter direct detection

 σ_{SI} in cm² for $M_{DM} \approx M_Z$

- DM scatterings are very rare events
- Not easy to fully understand backgrounds at low recoil energy
- most experiments aim at reducing backgrounds as much as possible

No evidence for DM found until now

