

SoLid: Search for neutrino oscillations using a Lithium-6 Detector at a nuclear reactor

University of Birmingham Seminar, 30th Nov 2016

Dan Saunders, on behalf of the SoLid collaboration

Introduction SoLid

Technology

Prototype

Results

Phase 1 **Preparations** **Conclusions**

Outline

SoLi∂

- Neutrino Oscillations (reminder).
	- Reactor based neutrino experiments (current gen & next gen).
	- Challenges at very short baselines.
- SoLid technology.
	- Detection principle.
	- Status of the project.
- Prototype results.
	- Reconstruction.
	- Searching for neutrinos.
- Phase 1 preparations:
	- Optimisations.
- **Conclusions**

Technology

Prototype

Results

Phase 1 **Preparations** Conclusions

Neutrino Oscillations (reminder)

- 2015 Nobel prize for discovery of neutrino oscillations (solar):
	- Arthur McDonald (SNO) and Takaaki Kajita (Super K) experiments!
	- Flux measurements of solar electron and muon neutrinos.
	- Solves solar neutrino problem.
	- Requires neutrino's have mass.

SNO Observatory NGT at Super Kamiokande

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Neutrino Oscillations - Atmospheric

- Cosmic rays produce neutrinos uniformly in the atmosphere.
- Detector on the surface (with directionality) can observe neutrino oscillations by measuring V flux as a function of zenith angle.

Introduction SoLid

Technology Prototype

Results

Phase 1 **Preparations** **Conclusions**

Short Baseline Experiments

- Reactor neutrino experiments well established:
	- First successfully attempted 1956 at Savannah River.
	- Multiple experiments since, with varying mass and distances from reactors.
- Take advantage of the enormous flux of neutrinos from reactors:
	- E.g. Daya Bay event rate: ~10 neutrinos per hour.

Introduction SoLid

Technology

Prototype **Results**

Phase 1 **Preparations** Conclusions

Current Generation

- Current generation experiments searching for oscillations at short baselines:
	- \cdot ~100m to ~1Km:
	- Daya Bay, RENO, Double-Chooz.
- Very successful physics campaigns:
	- Largely dedicated to measuring antineutrino electron disappearance (first time observed!). (independent of CP violating terms). First confirmed observation in 2012.
	- Use near and far detector to remove systematic errors in neutrino flux calculations.
- Common characteristics:
	- Underground lab \rightarrow reduced background.
	- Gd-doped liquid scintillator \rightarrow flammable.
	- Large external shielding \rightarrow non-compact.
		- → *Difficult to use very short baselines.*
- Some anomalies…

Technology Prototype **Results**

Phase 1 **Preparations**

Conclusions

Reactor Anomaly

- Re-evaluation of reactor flux calculations increased predicted rate 2.7σ deficit.
- Proposed solution 4th 'sterile' neutrino (limits from LEP):
	- Analogous to logic used for solar and atmospheric deficits.

Introduction SoLid

Technology Prototype

Results

Phase 1 **Preparations** **Conclusions**

5 MeV Distortion

- Current generation observe unexpected distortion ('hump', or 'bump') around 5 MeV.
- Multiple explanations:
	- Errors in neutrino flux calculations from less understood isotopes.
	- Problems with tuning from other experiments.
	- Cannot be resolved exclusively by oscillations.
- Can be resolved by studying spectra from reactors with different energy spectra (such as ^{235}U).

Introduction SoLid

Technology

Prototype

Results

Phase 1 **Preparations**

Conclusions

Gallium Anomaly

- Gallex and SAGE solar experiments tested with intense radioactive sources:
	- Rate deficit of 14 ± 6 %.
	- 2.8σ
- Could be explained by sterile oscillation.

 \rightarrow

Motivation to search at shorter baselines.

 $v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Giunti Laveder 1006.3244 J. Kopp et al., hep/ph:1303.3011

Introduction SoLid

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Very Short Baseline Experiments

- Next generation of reactor neutrino experiments study *very short* baseline:
	- Increased sensitivity for oscillation search.
	- Require compactness to be placed near reactor.

Introduction SoLid

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Very Short Baseline Experiments

- Next generation of reactor neutrino experiments study *very short* baseline:
	- Increased sensitivity for oscillation search.
	- Require compactness to be placed near reactor.

Data Bay module example

SoLid example

Introduction SoLid

Technology

Prototype

Results

Phase 1 **Preparations**

Conclusions

Challenges at VSBL

Detector

- High resolutions for oscillation search:
	- Spatial.
	- Energy.
- Effective background rejection:
	- Low overburden.
	- Reactor radiation.

Reactor

- Compact core
	- Understood fuel composition.
	- Access as close as possible.
- Security implications:
	- Reduce flammable liquids.

Introduction SoLid

Technology Prototype **Results**

Phase 1 **Preparations** E University of

Challenges at VSBL

Detector

- High resolutions for oscillation search:
	- Spatial.
	- Energy.
- Effective background rejection:
	- Low overburden.
	- **Reactor radiation.**

Reactor

- **Compact core**
	- Understood fuel composition.
	- Access as close as possible.
- Security implications:
	- Reduce flammable liquids.

SoLid Solutions

Conclusions

- Highly segmented detector:
	- Localisation of events.
	- (Quasi) 3D topological information.
- Suitable photo detector SiPMs.
- Active and passive shielding.

- Research reactor:
	- Belgian Reactor 2 (BR2) at SCK-CEN.
	- Core diameter 0.5m.
	- 95% Enriched 235U, 60MW.
	- Access ports for experiments.

Introduction SoLid

Technology Prototype **Results**

Phase I **Preparations**

Conclusions

SoLid Collaboration

The SoLid Collaboration at Brussels - ca 50 people

University of Birmingham Seminar, 30/11/16 - SoLid 14/55 dan.saunders@bristol.ac.uk

Introduction SoLid

Technology Prototype **Results**

Phase 1 **Preparations**

Conclusions

BR2 Reactor @ SCK·CEN

- Research reactor:
	- Belgian Reactor 2 (BR2) at SCK-CEN
	- 95% Enriched 235U
	- Core diameter 0.5m
	- Access ports for experiments
- Low vertical overburden $(<$ I 0m WE).
- SoLid is on-axis with reactor core.
- No other users.

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Searching for Oscillations

- Probability \overline{v}_e disappearance proportional to E_v/L (L=distance from reactor).
- Distorts E_v spectrum.

Introduction SoLid

Technology

Phase 1 **Preparations** **Conclusions**

 E_{vis} in MeV

Searching for Oscillations

• Probability \bar{v}_e disappearance proportional to E_v/L (L=distance from reactor).

Prototype

Results

- Distorts E_v spectrum.
- 2D shape fit to distribution of E_v vs L (analogous to using near and far detector):
	- Careful about 5 MeV distortion.

No oscillations

SoLid Technology

 \equiv \equiv \equiv \equiv

Neutrino Channel

• Neutrinos seen via usual inverse beta decay (IBD) interactions:

$$
\overline{V}_e + p \rightarrow e^+ + n
$$

- Proton from detector volume.
- Positron briefly travels through detector before annihilating to two annihilation χ :
	- Energy in the range of 1-8 MeV highly correlated with ∇_e energy.
	- ys typically travel ~30cm away before absorption.
- Neutron needs to thermalise before capture:
	- Initially spatially near the positron (unlike background).

Neutrino Signal

Positron and neutron correlated in space and time.

Technology Prototype

Results

Phase 1 **Preparations** Conclusions

Detector Technology

Novel technology developed to take advantage of spatial correlation composite cubes.

Polyvynil-Toluene (PVT)

- Scintillator for ionising particles. Light out proportional to positron energy.
- Light detected within a *few ns*.

Sheet of 6LiF:ZnS(Ag)

- Neutron scintillator using the reaction: $n + Li \rightarrow \alpha + T$
- Alpha and triton scintillates in ZnS(Ag) with a *few µs***.**

Neutron ID

Scintillation light from neutrons emitted much slower than EMs.

20/55

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Detector Technology

- Cubes are stacked to form detector.
- PVT acts as neutron moderator:
	- Positron and neutron typically separated by less than two cubes.
	- Topologically different to backgrounds!
	- Average time separation \sim 100 μ s.
- Each cube $(PVT + Li)$ is wrapped in Tyvek for light tightness:
	- Positron and neutron signals localised to specific cubes \rightarrow high spatial resolution.
- Positron energy can be reconstructed independently of annihilation gammas.

Technology Prototype **Results**

Phase 1 **Preparations**

Conclusions

Detector Technology

- Positron energy can be reconstructed independently of annihilation gammas:
	- Gamma leakage not a problem.

e+ energy reconstruction. Left: including gamma energy. Right: only cubes near the positron. RO effects not included.

University of Birmingham Seminar, 30/11/16 - SoLid $23/55$ dan.saunders@bristol.ac.uk

Readout

SoLi∂

- Light from cubes is read-out using a 2D array of wavelength shifting fibres:
	- Typically $3x3mm^2$ square fibres sitting in 5x5mm2 grooves.
- Each end of a fibre optically coupled to a silicon photomultiplier.
- SiPMs readout by custom electronics:
	- Typically 14bit ADC range.
	- Sample period of 25ns fast enough to show neutron shape.

Introduction **SoLid Technology**

Prototype **Results**

Preparations

Phase 1

Conclusions

23/55

SoLi∂ Introduction **SoLid Technology** Prototype **Results** Phase 1 **Preparations Conclusions**

Experiment Status

SM1 Prototype (288kg)

• Test scalability and production.

Nemenix (8kg)

- Proof of concept.
- Demonstrate PID. Prove power of segmentation.
- **SoLid Phase 1 (1.6 T)**
- 12k cubes with 3.2k channels, ~300 events/day.
- Perform first oscillation search.

Technology Prototype **Results**

Phase 1 **Preparations** **Conclusions**

Prototype SoLid Module 1 (SM1)

- First large scale demonstration of technology.
- Cubes placed in an arrangement of 16x16x9 cubes (~20% planned mass).
- Assembled late 2014 and deployed at the reactor site prior to I year reactor refit.

Introduction **SoLid**

Technology Prototype **Results**

Phase 1 **Preparations** Conclusions

Prototype SoLid Module 1 (SM1)

Commissioning at Gent, Nov 2014 Deployment at BR2, Dec 2014

- 50hr reactor on run. Long reactor off and source calibration runs.
- Simple trigger and no passive shielding: statistically limited to see V_e signal.

Prototype Results

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

Neutron Identification

EM signal and Neutrons

- Prototype module used a simple trigger design for all signals:
	- Threshold trigger with co-incidence between vertical and horizontal fibre.
- 256 samples of written to disk for SiPMs above trigger threshold.

Introduction SoLid

Technology

Prototype Results

Phase 1 **Preparations** **Conclusions**

Neutron Identification

- Pulse shape discrimination algorithms developed (e.g. ratio of integral to amplitude)
	- Source runs demonstrate good population separation, despite large background environments.
- Neutrons well separated despite enormous EM background.

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

Positrons Reconstruction

Positron reconstruction algorithm comparison for SM1 configuration - Sim. Readout effects included

- Demonstration of positron energy reconstruction algorithms:
	- Nb negligible χ detection efficiency for SM1.

Technology

Prototype Results Phase 1 **Preparations**

Conclusions

Muon Identification

- Effective muon identification is critical for SoLid:
	- Source of IBD backgrounds.
	- Useful for commissioning and calibration studies.
- Can be identified by:
	- Large energy deposits.
	- High channel multiplicity.
	- Position in detector.

Muon event display

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

University of

Muon Identification

- Effective muon identification is critical for SoLid:
	- Source of IBD backgrounds.
	- Useful for commissioning and calibration studies.
- Can be identified by:
	- Large energy deposits.
	- High channel multiplicity.
	- Position in detector.

ROC curves demonstrating positron-muon separation.

Neutrino Candidates

- Inverse beta decay (IBD) analysis techniques developed.
- Granularity of the detector allows detailed topological studies.

IBD candidates from SM1. Neutrons in red, EM signals use colour scale Left: isolated candidate (waveforms above). Right: candidate with accidental gammas - can be used in analysis

University of Birmingham Seminar, 30/11/16 - SoLid 33/55 dan.saunders@bristol.ac.uk

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

Backgrounds - Accidental

- Random EM event (e.g. reactor ɣ) associated to a random neutron (e.g. reactor neutron).
- Studied using off-time windows (reactor on and reactor off separately).
- Combated with topology and energy selections.

Accidental Background candidates example using phase 1 configuration

Technology Prototype Results

Phase 1 **Preparations** **Conclusions**

Backgrounds - Correlated

- EM event and neutron produced in same process. Studied using reactor off data, e.g:
	- Muon spallation in the detector combat with muon ID.
	- High energy neutron combat with multiplicity selections against proton recoils.

Background candidates. Neutrons in red, EM signals use colour scale. Left: muon spallation event (Data). Right: cosmic neutron event (Sim).

University of Birmingham Seminar, 30/11/16 - SoLid 35/55 dan.saunders@bristol.ac.uk

SoLi∂ Introduction SoLid **Technology Prototype Results** Phase 1 **Preparations Conclusions**

IBD Features

- Reconstruction parameters for each IBD:
	- $\Delta t = t$ Prompt tDelayed

Reactor on-off comparison for time separation between prompt and delayed events. Background components shown (data driven)

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

IBD Features

- Reconstruction parameters for each IBD:
	- $\Delta t = t$ Prompt tDelayed
	- $\Delta r = |\mathbf{r}_{\text{Prompt}} \mathbf{r}_{\text{Delayed}}|$

Radial separation between prompt and delayed events for signal and background IBD candidates

Technology

Prototype Results

Phase 1 **Preparations**

Conclusions

IBD Features

- Reconstruction parameters for each IBD:
	- $\Delta t = t$ Prompt tDelayed
	- $\Delta r = |\mathbf{r}_{\text{Prompt}} \mathbf{r}_{\text{Delayed}}|$
	- Positron multiplicity

vol = 1 \sim vol = 2 \sim vol = 4 \sim vol = 8

University of Birmingham Seminar, 30/11/16 - SoLid 38/55 dan.saunders@bristol.ac.uk

38/55

Technology Prototype Results

Phase 1 **Preparations**

Conclusions

IBD Features

- Reconstruction parameters for each IBD:
	- $\Delta t = t$ Prompt tDelayed
	- $\Delta r = |\mathbf{r}_{\text{Prompt}} \mathbf{r}_{\text{Delayed}}|$
	- Positron multiplicity
	- Positron energy
- Good agreement between reactor on data and expectation:
	- Validation of background understanding.

Reactor on-off comparison of prompt energies

Signal Selection

- S:N critical in sterile search:
- Cut based analysis shows significant reductions in backgrounds:

- **Segmentation** provides many handles for tackling backgrounds:
	- Spatial separation, directionality, multiplicity.

Signal Selection

- Beginning to explore machine learning analysis techniques:
	- Likelihood discriminators and SVM.
- Initial results show further factor ~1.5 reduction in background rate.
- Starting to also look at deep learning methods (e.g. tensor flow) for PID and IBD selections.

ROC curves for various MVA techniques (scikit learn). Reactor off dataset used for training.

Signal Selection

- Beginning to explore machine learning analysis techniques:
	- Likelihood discriminators and SVM.
- Initial results show further factor ~1.5 reduction in background rate.
- Starting to also look at deep learning methods (e.g. tensor flow) for PID and IBD selections.

ROC curves using SVM technique, popping different training features. Topology is the most effective.

Technology Prototype

Results

Phase 1 **Preparations**

Conclusions

Muon Energy Calibration

- Muons are not only a source of background - can be used for calibration.
- With tracking algorithms and geometrical selections, can find dE/dx distribution for each cube.
- Can be used to extract absolute scale and perform cube equalisation.

Muon calibration example event

Muon Energy Calibration

• Can be used to extract absolute scale and perform cube equalisation:

Technology Prototype

Phase 1 **Preparations**

Conclusions

Muon Energy Calibration

Can be used to extract absolute scale and perform cube equalisation:

Results

dE/dx as a function of position along multiple fibres

Muon Energy Calibration

- Cube equalisation can be achieved to the ~1% level.
- Absolute energy scale measured to the ~5% level.

Simulations

- Full cosmic simulation of BR2 reactor environment (geometry, detector, shielding etc)
	- Multiple generators: Guang, Cry, Gordon
- Neutron transport validated using G4 and MCNP agreement \sim 2%.
- Good agreement between sim and prototype data \rightarrow key SMI results:
	- Background shapes, neutron capture time, muon angular distributions etc.

Cosmic simulation of the BR2 reactor hall - example showing muon induced neutron production locations

Muon Angular Distributions

- Excellent agreement between cosmic track angle distribution sim and data.
- Sensitive to building geometry.
- *• (Spikes due to discretised detector)*

Phase 1 Preparations

Introduction SoLid

Technology Prototype **Results**

Phase 1 Preparations

Conclusions

Phase 1 Configuration

- First phase of the experiment currently being built:
	- Initially 1.6 T.
	- 50 planes of 16 x 16 cubes.
- Commissioning expected at the reactor hall May 2017.

Many enhancements compared to prototype…

Passive Shielding

- Entire detector to be surrounded by 50cm water walls. HDPE on the root.
- Shield against backgrounds (e.g. highly energetic neutrons): expect ~10x reduction.

Technology Prototype

Results

Phase 1 Preparations

Conclusions

Neutron Trigger

- New algorithms for electronic neutron trigger:
	- Neutron ID algorithms to be migrated into FPGAs.
- Combined with buffer (~1ms) readout for positron detection (±2 planes around n):
	- Very high prompt detection efficiency.
	- Further handles for discriminating background prompt events.

Neutron trigger ROC curves for various PID algorithms

Technology Prototype **Results**

Phase 1 Preparations **Conclusions**

Neutron Trigger

- Prototype used simple trigger due to time constraints.
	- High threshold set to manage data rates: neutron trigger efficiency \sim 5%
- Number of peaks in neutron waveform (rolling calculation) gives far better separation

Introduction SoLid

Technology Prototype

Results

Phase 1 Preparations

Conclusions

Readout

- Number of fibres and SiPMs doubled:
	- Each cube readout by 4 fibres.
- Light yield increased ~1.6x:
	- Material choice (tyvec, fibres)
	- Energy resolution ~14%/ $\sqrt{\mathsf{E}}$
	- Improves background separation and increases sensitivity in oscillation search.
- Entire container cooled to ~5℃:
	- Increased stability for SiPMs.
	- Signifncalty reduces dark counts (and

Upgrade cube - 4 fibres and 2 Li screens

University of Birmingham Seminar, 30/11/16 - SoLid 54/55 dan.saunders@bristol.ac.uk

Technology Prototype **Results**

Phase 1 Preparations

Calibration

- Off-site calibration system (CALIPSO)
	- Plane characterisation
	- Neutrons and EM sources used to allow precise cube to cube equalisation
- In-situ calibration system (CROSS)

Conclusions

- Energy scale determination (~1% level)
- Absolute neutron detection efficiency (target ~3% precision)

Introduction SoLid

Technology

Prototype **Results**

Phase 1 **Preparations** **Conclusions**

E University of

Conclusions

SoLi∂

- Deployment and analysis of prototype complete:
	- Experience running technology at large scale.
	- Power of segmentation demonstrated: \sim 100 \times reduction B_{Acc} , ~10x reduction $B_{Cor.}$
	- Validation of simulation and data driven background studies.
	- Developed software and analysis techniques.
- Construction of phase 1 SoLid began:
	- 1.6T, to perform initial sterile search.
	- Upgrades for reduced background, energy resolution and trigger efficiency.
	- Deployed early 2017.
	- On track for S:N \sim 3:1 with ε_{IBD} \sim 30%.

References

[1] B. Kayser @ Moriond EW 2012:arXiv: 1207.2167

[2] K. N. Abazajian et al., arXiv:1204.5379 [hep-ph]

[3] Kopp,Machado,MaltoniandSchwetz,JHEP05(2013)050

[4] Mention et al., Phys. Rev. D 83 073006 (2011)

Backup

Sim/Data Comparison

- Full cosmic simulation of BR2 reactor environment (geometry, detector, shielding etc)
	- Multiple generators: Guang, Cry, Gordon
- Neutron transport validated using G4 and MCNP
- Good agreement between sim and prototype data:
	- Background shapes, neutron capture time, muon angular distributions etc.

Energy Calibration

- SM1 EM calibration performed using comic muons:
	- High quality reconstruction tracks
	- dE/dx distribution found for each cube
	- Selection criteria applied to remove non-degenerate cases
	- Allows for equalisation signal and energy scale estimation

Energy Calibration

- SM1 EM calibration performed using comic muons:
	- High quality reconstruction tracks
	- dE/dx distribution found for each cube
	- Selection criteria applied to remove non-degenerate cases
	- Allows for equalisation signal and energy scale estimation

Oscillation Formalism

- Neutrino oscillations (hence masses) are not part of the standard model, but can be modified to incorporate.
- Mixing of the flavour eigenstates can be parameterised by the PMNS mixing matrix (analogous to CKM):

$$
\begin{bmatrix}\nu_e \\ \nu_\mu \\ \nu_\tau\n\end{bmatrix} = \begin{bmatrix}\n c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13}\end{bmatrix} \begin{bmatrix}\nu_e \\ \nu_\mu \\ \nu_\tau\n\end{bmatrix}
$$

- Four free parameters:
	- Three 'mixing angles': θ_{13} , θ_{12} , θ_{23}
	- CP violating angle delta.

