

Measurement of the production cross section of prompt J/ ψ mesons in association with a W[±] boson in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

Constantinos Melachrinos (University of Chicago), <u>melachrinos@gmail.com</u> University of Birmingham Particle Physics Seminar 21st January 2014

Outline

- <u>Theoretical Motivation</u>
 Standard Model of Particle Physics
- J/ψ production
- Double Parton Scattering
- 2. <u>Experimental Apparatus</u>
 Large Hadron Collider
 A Toroidal LHC Apparatus

3. Analysis

- Strategy
- Background sources
- Fit procedure

SUBMITTED TO JHEP HTTP://ARXIV.ORG/ABS/1401.2831 ADDITIONAL FIGURES FROM ATLAS-CONF-2013-042

4. <u>Results</u> Observation of W+J/ψ process Measurement of cross-

- Measurement of crosssection ratio $W+J/\psi$: W
- Double Parton Scattering
- Uncertainties

5. Conclusions

- Significance
- Next steps

Standard Model of Particle Physics

Standard Model of Particle Physics

Standard Model of Particle Physics

J/ψ meson

Mass	3.096916 ± 0.000011 GeV/c ²	
Decay width	91.0 ± 3.2 keV	
Decays	88% hadrons, 6% e ⁺ e ⁻ , 6% μ ⁺ μ ⁻	
Quantum properties	Spin=1, Angular Momentum=0, Odd parity, Odd charge conjugation	

Charmonium

Phys. Lett. B 592 1 (2004)

Mass	3.096916 ± 0.000011 GeV/c ²	
Decay width	91.0 ± 3.2 keV	
Decays	88% hadrons, 6% e ⁺ e ⁻ , 6% μ ⁺ μ ⁻	
Quantum properties	Spin=1, Angular Momentum=0, Odd parity, Odd charge conjugation	

J/ψ production

Nucl. Phys. B 850 (2011) 387-444

• J/ψ production poorly understood

 Models (Colour Singlet, Colour Octet, Colour Evaporation) cannot predict transverse momentum (p_T) spectrum, or polarization profile, or both

J/ψ production

- QCD factorization theorem
- Colour Singlet:
 - creation of two heavy quarks: pQCD
 - binding: wave function
 - assume colour and spin of qq pair do not change during binding
 - two gluons
- Colour Octet:
 - NRQCD
 - short distance: pQCD
 - hadronization of qq: nonperturbative
 - colours can be different
 - one gluon

$W+J/\psi$ production

 J/ψ $g^{a} = 0$ $C(\bar{c})$ $g^{a} = 0$ $C(\bar{c})$ $g^{a} = 0$ W^{\pm} $G^{a} = 0$ W^{\pm} (a) (b)

arxiv:1303.5327

Colour Singlet

Colour Octet

• W+J/ ψ is quark-initiated process (Colour Singlet and Colour Octet)

- \bullet Differs from mostly gluon fusion inclusive J/ ψ
- Only previous similar search from CDF, W+Y, set limits
- Another contribution to W+J/ ψ can come from Double Parton Scattering

• Products of collisions coming from different partons in the protons

- Probes structure of proton (correlations of partons)
- Background for some rare processes
- Need to measure to probe universality
- σ_{eff} measured in different experiments and energies

New J. Phys. 15 (2013) 033038

Use normalized jet pair transverse momentum imbalance as discriminating factor template A = SPI-like events template B = DPI-like events
 fraction of DPI events = 0.076 ± 0.013 (stat) ± 0.018 (syst)

• Measured ATLAS result $\sigma_{eff} = 15 \pm 3$ (stat) $^{+5}$ -3 (syst) mb

Cross-section ratio $W+J/\psi:W$

• Measurement of cross-section ratio provides input to theorists who study J/ ψ and W+J/ ψ production

Cross-section ratio $W+J/\psi$:W

• Measurement of cross-section ratio provides input to theorists who study J/ ψ and W+J/ ψ production

 Ratio reduces or cancels systematic uncertainties associated with luminosity and W boson

Large Hadron Collider

CERN-Brochure-2008-001-Eng

Large Hadron Collider

CERN-Brochure-2008-001-Eng

Large Hadron Collider

CERN-Brochure-2008-001-Eng

A Toroidal LHC Apparatus

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 19

January 21st 2014

Data collection

• LHC delivered 5.5 fb⁻¹ of data in 2011 with pp collisions at $\sqrt{s}=7$ TeV

• ATLAS recorded 5.1 fb⁻¹

 4.6 fb⁻¹ of data were deemed to be good for physics

Eur. Phys. J. C73 (2013) 2518

Decisions on which data to save for further analysis
Fast, efficient

 Select events with muon with high transverse momentum (p_T>18 GeV)

• 4.5 fb⁻¹ data selected by our trigger

Muon reconstruction

 $W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ $J/\psi \rightarrow \mu^{+} \mu^{-}$

• Tracks in inner detector

- Minimum ionization in calorimeters
- Hits and tracks in muon detectors

 Low transverse momentum muons may not escape calorimeter

Muon efficiency

CB = combined ST = segment-tagged

ST more efficient at low transverse momentum

ATL-COM-MUON-2012-013

Missing transverse energy

 $W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ $J/\psi \rightarrow \mu^{+} \mu^{-}$

 Neutrinos cannot be detected at ATLAS

• Principle of energymomentum conservation

 Initial transverse momentum is 0

Missing transverse energy

Missing transverse energy well described by simulation

ATLAS-CONF-2012-101

W observation

ATLAS-CONF-2010-044

• W boson observed in ATLAS already with 33 pb⁻¹ of data

• W transverse mass $M_T(W)$ combines μ and ν in the transverse plane

 $M_T(W) = \sqrt{2E_{\text{miss}}^T p_T(\ell)(1 - \cos \Delta \phi(\ell, E_{\text{miss}}^T))}$

J/ψ observation

 $y = \frac{1}{2} \ln \frac{E + p_z c}{E - p_z c}$

• J/ψ meson observed in ATLAS already with 2.2 pb⁻¹

 Invariant mass of two oppositely-charged muons peaks at 3.1 GeV for J/ψ

• ψ at 3.7 GeV

Background combinatorics

 rapidity y is measure of angle at which particle is traveling

J/ψ pseudo-proper time

Nucl. Phys. B 850 (2011) 387-344

 Measure of distance travelled by J/ψ before its decay

 J/ψ pseudo-proper time to separate prompt from non-prompt J/ψ production (B-decays)

Prompt centered at 0 ps Non-prompt exponential tail

Analysis strategy

1. <u>Select W+J/ψ candidates</u>
High pT μ and high E_T^{miss}
Two oppositely charged muons

3. <u>W+J/ψ observation</u>
Evaluate backgrounds
Evaluate significance

2. Fit $W+J/\psi$ spectra • Simultaneously fit mass and pseudo-proper time distributions to get prompt J/ ψ component 4. <u>W+J/ψ:W ratio</u>
Subtract backgrounds
Evaluate uncertainties
Measure ratio

$W+J/\psi$ pre-selection

Requiring:

- Trigger (µ p_T>18 GeV)
- µ (from W) p_T > 25 GeV
- strict isolation for µ from W
- $E_T^{miss} > 20 \text{ GeV}$
- M_T(W) > 40 GeV
- Two oppositely-charged
- muons
- μ (from J/ ψ) p_T > 2.5 GeV

 $\begin{array}{c} t \rightarrow Wb \\ b \xrightarrow{\text{fragmentation}} B^{\pm/0} \\ B^+ \rightarrow J/\psi K^+ \\ B^0 \rightarrow J/\psi K^0 \\ B^+ \rightarrow J/\psi K^* (892)^+ \\ B^0 \rightarrow J/\psi K^* (892)^0 \\ B_s^0 \rightarrow J/\psi \phi (1020) \end{array}$

-prompt
-prompt

- top decays predominantly to W+bottom
- bottom fragmentation can result to B meson
- B meson can decay to J/ψ

Background	Rejection
top-antitop pair	non-prompt
W+bottom	non-prompt

Nucl. Phys. B 850 (2011) 387-344

- J/ ψ from bottom or top decays tend to be non-prompt, since b is long-lived
- Would be incorporated in the exponential tail in the fit

A	C
E _T ^{miss} <20 and	E _T ^{miss} >20 and
M _T (W)<40	M _T (W)>40
isolated muon	isolated muon
B	D
E _T ^{miss} <20 and	E _T ^{miss} >20 and
M _T (W)<40	M _T (W)>40
anti-isolated muon	anti-isolated muon

Background	Rejection	
top-antitop pair	non-prompt	
W+bottom	non-prompt	
multi-jet	fit M _T (W) distribution	

- multi-jets can mimic W
- "ABCD" method, based on isolation cut
- C is signal region, B is multi-jet enriched region
- kinematically-independent multi-jet fake-factor (AxD)/B to derive templates

Background	Rejection
top-antitop pair	non-prompt
W+bottom	non-prompt
multi-jet	fit M _T (W) distribution

 \bullet Data-driven templates for multi-jets and W shapes in W transverse mass $M_T(W)$

• Fit data to determine multi-jet yield

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 36

January 21st 2014

Background	Rejection
top-antitop pair	non-prompt
W+bottom	non-prompt
multi-jet	fit M _T (W) distribution
pileup	independent estimate

Extra interactions from other proton-proton collisions during the same event are called "pileup"

$$P_{J/\psi} = \frac{\sigma_{J/\psi}^{\rm bin}}{\sigma_{\rm inel}} = \frac{1}{\sigma_{\rm inel}} \int_{\rm bin} \frac{\mathrm{d}^2 \sigma(pp \to J/\psi X)}{\mathrm{d}y \ \mathrm{d}p_{\rm T}} \mathrm{d}y \ \mathrm{d}p_{\rm T}$$

 $N_{\rm extra} = 0.81 \pm 0.08$

 $N_{\text{pileup}} = N_{\text{extra}} P_{J/\psi} \mathcal{L} \sigma_{W^{\pm}}$

Background	Rejection
top-antitop pair	non-prompt
W+bottom	non-prompt
multi-jet	fit M _T (W) distribution
pileup	independent estimate

Multiply rate of W production with probability for additional J/ψ
Estimate using σ_{inel}=71.5 mb, measured J/ψ cross-section and mean number of extra vertices in data

• Estimated yield 1.8 ± 0.2 events, subtract from result

Same experimental signature as W+J/ψ: B_c[±] → J/ψ μ[±] ν_μ X
Inspect sPlot of invariant mass of three muons
No events found with mass less than 6.3 GeV (B_c mass)

Background	Rejection
top-antitop pair	non-prompt
W+bottom	non-prompt
multi-jet	fit M _T (W) distribution
pileup	independent estimate
Bc	invariant mass
Z+jets	rejected by cut

• Combining μ from W and oppositely-charged μ from J/ ψ

- Reject events with invariant mass within 10 GeV of Z mass
- No Z+jets events remain

Fit procedure

Gaussian

Simultaneously fit dimuon mass and pseudoproper time
 Extract prompt J/Ψ, non-prompt J/Ψ, prompt combinatorics and non-prompt combinatorics yields

• Nuisance parameters from inclusive J/ψ fit due to better statistics

$W+J/\psi$ fit Whole region 0<|y|<2.1

J/ψ: gaussian Combinatorics: exponential prompt: gaussian + 2-sided exponential non-prompt: 1-sided exponential

Confirming the W

x² fit with W and multi-jet templates on weighted data
multi-jet yield < 0.3 events at 95% credibility

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 42

January 21st 2014

Likelihood profile

Maximum likelihood method to determine yields
Different regions in rapidity to take advantage of resolution

Yields

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}(*)$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8_{-7.3}^{+8.4}$
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8\substack{+5.8\\-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0_{-7.1}^{+8.4}$
<i>p</i> -value	8.0×10^{-3}	$1.4 imes 10^{-6}$	2.1×10^{-7}
Significance (σ)	2.4	4.7	5.1

(*) of which 1.8 ± 0.2 originate from pileup

p-value evaluated with pseudo-experiments with B-only hypothesis to determine how often it fluctuates to S+B hypothesis

$$P_{J/\psi \mid W^{\pm}} = \sigma_{J/\psi} / \sigma_{\text{eff}}.$$

$$N_{W+J/\psi}^{\rm DPS} = P_{J/\psi|W^{\pm}} \times \sigma_W$$

• Multiply rate of W production with probability for additional J/ ψ

- Estimate using $\sigma_{\text{eff}}=15$ mb and measured J/ ψ cross-section
- Estimated yield 10.8 +/- 4.2 events

Azimuthal Δφ(W,J/ψ) expected to be flat for Double Parton Scattering (DPS), peak at π for Single Parton Scattering (SPS)
Both contributions present in sample

Cross-section ratio $W+J/\psi$:W

- Measurement of cross-section ratio provides input to theorists who study J/ ψ and W+J/ ψ production
- Ratio reduces or cancels systematic uncertainties associated with luminosity and W boson
- We have measured: N(W), N(W+J/ ψ)
- Only unknowns are: efficiency $\epsilon(J/\psi)$, acceptance $\alpha(J/\psi)$

Efficiencies (J/ ψ muons)

Muon efficiencies $\epsilon(J/\psi)$ calculated using J/ψ "tag-and-probe" method, in bins of muon p_T and charged pseudorapidity

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 48

January 21st 2014

Spin-alignment - Acceptance

- J/ψ spin-alignment is not known
- Decay muons can follow different paths, depending on the spin-alignment
- The efficiency for these muons to fall in the fiducial region of the detector is called acceptance $\alpha(J/\psi)$, in bins of J/ψ p_T and rapidity

Spin-alignment - Acceptance

- Different spin-alignment assumptions lead to different acceptance
- Report isotropic scenario as central value, and range of results

Fiducial cross-section ratio

Fiducial: ratio before the acceptance corrections

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 51

January 21st 2014

Inclusive cross-section ratio

Inclusive: ratio after the acceptance corrections

Constantinos Melachrinos (University of Chicago), melachrinos@gmail.com 52

January 21st 2014

Uncertainties

Source	Barrel	Endcap
J/ψ muon efficiency	(3–5)%	(3–5)%
W^{\pm} boson kinematics	2%	5%
Fit procedure	$^{+3}_{-2}\%$	$^{+2}_{-1}\%$
Choice of fit nuisance parameters	1%	1%
Choice of fit functional forms	4%	4%
Muon momentum scale	negligible	
J/ψ spin-alignment	$^{+36}_{-25}\%$	$^{+27}_{-13}\%$
Statistical	+47 % -40%	+30% -27%

 Muon efficiency: Difference between data-driven and Monte Carlo efficiencies

• W boson kinematics: Difference between several MC simulations

- Fit: Tried different functional forms, nuisance parameters
- Dominated by statistical uncertainties

Comparing DPS-subtracted measurement to theoretical predictions

- Leading-order Colour Singlet (CSM) contributions include χ ->J/ ψ feeddown: (10-32) x 10⁻⁸
- Next-to-leading order Colour Octet (COM) contributions below CSM: (4.6-6.2) x 10⁻⁸

Summary - Outlook

Set out to search for W+J/ ψ associated production

- First observation of Charmonium+Vector boson production
- Measurement of cross-section ratio W+J/ ψ : W
- Provide input to theorists who study J/ ψ and W+J/ ψ production
- Dominated by statistical uncertainties
- Measurement compatible with theoretical predictions within 2σ

Next steps:

- Higher energy: W+J/ ψ at 8/14 TeV, differential cross-section
- New undetected signatures: $Z+J/\psi$, $W/Z+\Upsilon$
- Better understanding of J/ψ production

SUBMITTED TO JHEP HTTP://ARXIV.ORG/ABS/1401.2831 ADDITIONAL FIGURES FROM ATLAS-CONF-2013-042

sPlot weights

$$\mathcal{L} = \sum_{e=1}^{N} \ln \left\{ \sum_{i=1}^{N_{s}} N_{i} f_{i}(y_{e}) \right\} - \sum_{i=1}^{N_{s}} N_{i}$$

- Sophisticated method of background subtraction
- Each event attributed a signal or background weight according to likelihood fit
- No cuts are made, all events contribute to the projection
- \bullet We use sPlot to inspect prompt J/ ψ candidates using all preselected events