Christoph Englert

Three avenues for Higgs phenomenology

Particle Physics Seminar Birmingham 16/01/2019

Overview

- Improving the expected: SM-like Higgs couplings
 - lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning

• • • • • • •

Overview

.

- Improving the expected: SM-like Higgs couplings
 - lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning

- Constraining/observing the unexpected:
 - Higgs sector CP violation
 -

Overview

- Improving the expected: SM-like Higgs couplings
 - lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning

- Constraining/observing the unexpected:
 - Higgs sector CP violation
 -

.....

• Closing in on new physics in the Higgs sector

• di-Higgs production as a probe of new physics

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2

 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

`t Hooft, "Under the Spell of the Gauge Principle"

Collision point Collision

Ws and Zs in 1983 at UA1/UA2

 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

unique answer to this in 1964

[Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2

 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

unique answer to this in 1964 [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with ⟨H⟩ ≠ 0
 r "spontaneous" symmetry breaking

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2

 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

unique answer to this in 1964 [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

- non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with ⟨H⟩ ≠ 0
 r "spontaneous" symmetry breaking
- massive gauge bosons, but no ghost problems at small distances
 renormalizability, probability conservation

The Standard Model: taking stock

Status of LHC measurements

everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

the SM is flawed

no evidence for exotics

coupling/scale separated BSM physics

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$ [Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10] 59 B-conserving operators \otimes flavor \otimes h.c., d=6 2499 parameters (reduces to 76 with N_f=1)

Fingerprinting the lack of new physics

no evidence for exotics

coupling/scale separated BSM physics

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$ [Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10] 59 B-conserving operators \otimes flavor \otimes h.c., d=6 2499 parameters (reduces to 76 with N_f=1)

the SM is flawed

concrete models

- extended SMEFT
- (\mathbb{C}) Higgs portals

compositeness..

- 2HDMs
- (N)MSSM

Weak decay

- large number of unconstrained EFT parameters lead to phenomenological degeneracies = "blind directions"
- one of the most prominent an relevant for Higgs physics

contact ggH interactions mask top Yukawa measurements

• way out: resolve C₀ function for $p_T(H) \gtrsim m_t$ with one or more jets

[Banfi, Martin, Sanz `13] [Grojean, Salvioni, Schalffer, Weiler `13] [Schalffer et al `14] [Buschmann et al. `14] [Buschmann et al. `14]

A word of caution

• way out: resolve C_0 function for $p_T(H) \gtrsim m_t$ with one or more jets

[Banfi, Martin, Sanz `13] [Grojean, Salvioni, Schalffer, Weiler `13] [Schalffer et al `14] [Buschmann et al. `14] [Buschmann et al. `14]

comparably small impact of tail uncertainties
 (lin vs log ~ 35% different shape uncertainty at 150 GeV pT_____

 decoupled (non-resonant) new physics perturbatively constrained at relatively low transverse momentum

"fit will always pick region where null hypothesis is under good control" similar conclusion hold for more abundant top final states [CE, Moore, Nordstrom, Russell `16]

large stats!

• more kinematic information for H+2j, which is particularly promising, unfortunately $m_t = \infty$ SM limit accidentally good [Del Duca et al. `03]

• more kinematic information for H+2j, which is particularly promising, unfortunately $m_t = \infty$ SM limit accidentally good

neural net learns regions that are sensitive to uncertainty....

[Goodfellow et al. `14] [Louppe, Kagan, Cranmer `16] ...

• more kinematic information for H+2j, which is particularly promising, unfortunately $m_t = \infty$ SM limit accidentally good

... and can be forced to avoid them -> most robust constraints [Goodfellow et al. `14] [Louppe, Kagan, Cranmer `16] ...

• more kinematic information for H+2j, which is particularly promising, unfortunately $m_t = \infty$ SM limit accidentally good

... and can be forced to avoid them -> most robust constraints [Goodfellow et al. `14] [Louppe, Kagan, Cranmer `16] ...

a repeating point of argument is inclusion of (dim 6)² as there is no clear right or wrong

a repeating point of argument is inclusion of (dim 6)² as there is no clear right or wrong

• in practice this is (often) not a huge problem for large data samples

• a repeating point of argument is inclusion of (dim 6)² as there is no clear right or wrong

- in practice this is (often) not a huge problem for large data samples
- qualitatively different for CP-violation:

 $\frac{c_i}{\Lambda^2}$

~ dim 6

• only genuinely CP-sensitive observables carry information signed $\Delta \phi_{jj}$, asymmetries,[Figy, Hankele, Klämke, Zeppenfeld `06]...

naive perturbative power counting

~ (dim 6)²

- $\frac{c_i^2}{\Lambda^4}$
- every CP-even observable carries information

cross sections, widths, pT spectra...

• a repeating point of argument is inclusion of (dim 6)² as there is no clear right or wrong

• in practice this is (often) not a huge problem for large data samples

naive

• qualitatively different for CP-violation:

[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]

the linearised upshot

$$\begin{split} O_{H\tilde{G}} &= H^{\dagger}HG^{a\mu\nu}\tilde{G}^{a}_{\mu\nu}\,,\\ O_{H\tilde{W}} &= H^{\dagger}HW^{a\mu\nu}\tilde{W}^{a}_{\mu\nu}\,,\\ O_{H\tilde{B}} &= H^{\dagger}HB^{\mu\nu}\tilde{B}_{\mu\nu}\,,\\ O_{H\tilde{W}B} &= H^{\dagger}\tau^{a}HB_{\mu\nu}\tilde{W}^{a\mu\nu} \end{split}$$

+

- top quark $\sim \frac{\alpha_s}{8\pi v} G^a_{\mu\nu} \tilde{G}^{a\ \mu\nu} h = \tilde{O}_G$ Yukawa phases ...ignore them for now...
- fit uses ATLAS results for 4 leptons, γγ
 [ATLAS 1708.02810; 1802.04146]
- small stats/observables = blind directions for decay vs production
- non-significant asymmetry 0.3±0.2

20

[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]

[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]

• split GF selection into m_t -related Higgs p_T threshold ~ 150 GeV

split GF selection into mt-related Higgs pT threshold ~ 150 GeV

• split GF selection into m_t -related Higgs p_T threshold ~ 150 GeV

split GF selection into mt-related Higgs pT threshold ~ 150 GeV

LHC blind spots: Higgs potential

LHC blind spots: Higgs potential

however...

correlated with on-shell Higgs phenomenology

 \boldsymbol{g}

LHC blind spots: Higgs potential

however...

h

easy to arrange EFT coefficients in a way to get spectacular rates,
 but can doubt physical relevance of such limits (→ matching)

LHC blind spots: Higgs potential

however...

- easy to arrange EFT coefficients in a way to get spectacular rates,
 but can doubt physical relevance of such limits (→ matching)
- use concrete Higgs sector extensions
 - extrapolate 125 GeV signal strengths
 - extrapolate exotic Higgs searches
 - additional constraints (electron EDMs, flavor, perturbativity, ...)

LHC blind spots: Higgs potential

however...

correlated with on-shell Higgs phenomenology broken by $\sim \bar{t}th^2/\Lambda$

- easy to arrange EFT coefficients in a way to get spectacular rates,
 but can doubt physical relevance of such limits (->matching)
- use concrete Higgs sector extensions
 - extrapolate 125 GeV signal strengths
 - extrapolate exotic Higgs searches

in how far are di-Higgs final states still relevant at 3/ab?

• additional constraints (electron EDMs, flavor, perturbativity, ...)

C2HDM & NMSSM

[Basler, Dawson, CE, Mühlleitner `18]

 SM-like measurements can show a plethora resonant anomalies diHiggs final states important for BSM discovery

...diHiggs final states quickly lose relevance when approaching EFT limit

Higgs in the SM and beyond

- Technical advances have been extremely rapid
 - matrix elements
 - jets
 - machine learning
- Opportunity to link the Higgs sector to new physics
 - cure SM shortcomings (CP violation...)
 - multi-Higgs production as a chance for BSM
 - LHC probably not be enough to achieve this in full glory