### Imperial College London



# The COMET Experiment: Searching for Muonto-Electron Conversion

Ben Krikler 9<sup>th</sup> March 2016 Presented at University of Birmingham

#### Overview

#### Charged Lepton Flavour Violation

Bound muons and the µ–e conversion process

How to build a sensitive µ-e conversion experiment (COMET)

**COMET Status and R&D** 

# Charged Lepton Flavour Violation

### Muon Decay



Conservation of Lepton Flavour: 1 muon  $\rightarrow$  1 muon-neutrino 0 electrons  $\rightarrow$  1 electron + 1 anti electron-neutrino

### Muon Decay + Neutrino Oscillations



# 1 muon → 1 electron No outgoing neutrinos BUT: would not conserve energy and momentum

#### via Neutrino Oscillation



•  $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$ 

•No outgoing neutrinos

• Atomic nucleus: conserve energy and momentum

•Violates conservation of Charged Lepton Flavour

#### via Neutrino Oscillation



**Beyond the Standard Model** 



The COMET Experiment, 9 Mar. 2016

8

#### Complementarity with Other Muon LFV Channels



#### Muon to electron + gamma

Emission of a photon
MEG experiment at PSI
Last published 2013
Upgrade to begin running shortly

#### Muon to three electrons • Mu3e experiment at PSI

### µ-e conversion against atomic electrons

• Replace quark in nucleus with atomic electron (at COMET ?)

#### $\mu \rightarrow e$ gamma vs $\mu - e$ conversion



 Relative sensitivity in µ-e conversion and µ-e gamma is model dependent
 Highly complementary searches

![](_page_9_Figure_3.jpeg)

Ben Krikler: bek07@imperial.ac.uk

#### $\mu \rightarrow e$ gamma vs $\mu - e$ conversion

![](_page_10_Figure_1.jpeg)

 Relative sensitivity in µ-e conversion and µ-e gamma is model dependent
 Highly complementary searches

$$\mathcal{C} = \frac{1}{\kappa + 1} \frac{m_{\mu}}{\Lambda^2} (\bar{\mu}_R \sigma^{\mu\nu} e_L F_{\mu\nu}) + \frac{\kappa}{\kappa + 1} \frac{1}{\Lambda^2} (\bar{\mu}_L \gamma^{\mu} e_L) (\bar{q}_L \gamma_{\mu} q_L)$$

Ben Krikler: bek07@imperial.ac.uk

## Bound Muon Physics and the µ-e Conversion Process

### **Bound Muons**

 Everything starts by stopping muons around a nucleus

![](_page_12_Picture_2.jpeg)

Electromagnetic cascade to the ground state orbital

#### Bound Muon Decay

![](_page_12_Picture_5.jpeg)

#### Muon Nuclear Capture

![](_page_12_Picture_7.jpeg)

#### Muon to Electron Conversion

![](_page_12_Picture_9.jpeg)

### **Muon Lifetime**

•Decay partial lifetime

 OIncreases with Z
 OBound muon momentum increases
 ⇒ Time dilation

 Capture partial lifetime
 Incoherent ⇒ Grows linearly with Z
 Eventually muon completely contained in nucleus ⇒ levels out

![](_page_13_Figure_4.jpeg)

### **Bound Muon Decay**

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

Bound muon decay

Free muon decay

• Maximum energy for electrons from free muon decay = Half of muon mass

- •Bound decay around nucleus • End-point close to muon mass •Very steeply falling spectrum above 60 MeV
- Theoretical uncertainty on spectrum from initial muon wavefunction

•No accurate measurement at the end point

![](_page_14_Figure_9.jpeg)

Czarnecki et al. 2011 DOI: 10.1103/PhysRevD.84.013006

### Muon Nuclear Capture

Nuclear capture dumps about 50 MeV into nucleus

#### •Often followed by particle emission:

Photons, neutronsProtons, deuterons, alphas

#### Products of muon capture on Aluminium are not well known

#### •Had to measure this (AlCap experiment)

![](_page_15_Figure_6.jpeg)

Inclusive Emission of charged particles from capture on silicon

 Target
 A-2, Z-2 A-4, Z-3 

  $(\mu^-, pn)$   $(\mu^-, \alpha)$  

 A, Z  $(10^{-3})$ 
 ${}^{27}Al$   $28 \pm 4$ 
 $7.6 \pm 1.1$ 

Proton and alpha emission per muon capture Wyttenbach et al. Nuc. Phys. 1978

![](_page_15_Figure_10.jpeg)

![](_page_15_Figure_11.jpeg)

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

### AlCap: Aluminium Capture of Muons

![](_page_16_Figure_1.jpeg)

Joint effort between Mu2e and COMET
3 runs at Paul Scherrer Institute from 2013 to 2015
Studying charged and neutral particles emitted following muon capture on aluminium

#### Charged Lepton Flavour Violation:

$$\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$$

Nucleus is unchanged, process is coherent:

$$E_e = m_\mu - B_\mu - E_{\text{recoil}}$$

On Aluminium, used by COMET:

 $E_e = 104.9 \text{ MeV}$ 

Typically define the conversion rate as:  $\mathcal{R} = \frac{\Gamma(\mu\text{-}e \text{ conversion})}{\Gamma(\mu \text{ capture})}$ 

Current limit from SINDRUM-II (90% C.L) on Gold:  $\mathcal{R} < 7 imes 10^{-13}$ 

![](_page_17_Figure_9.jpeg)

![](_page_17_Figure_10.jpeg)

# Designing the COMET Experiment

### COMET: COherent Muon to Electron Transitions

 $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$ 

![](_page_19_Picture_1.jpeg)

Present limits by SINDRUM-II (2006):  $\mathcal{R} < 7 imes 10^{-13}$ 

COMET Single-Event-Sensitivity: Phase-I =  $3 \times 10^{-15}$ Phase-II =  $3 \times 10^{-17}$ 

![](_page_19_Figure_4.jpeg)

### COMET at J-PARC

![](_page_20_Figure_1.jpeg)

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

### Achieving High Sensitivity

Overall Goals •Many stopped muons

•High signal acceptance

•Fewer than 1 expected background events during the run

![](_page_21_Figure_5.jpeg)

![](_page_21_Figure_6.jpeg)

#### Design Considerations

Intense, low-energy muon beam at the target
Low detector occupancy
Low material budget (Stopping Target and Detector)

### **COMET:** Phase-II

![](_page_22_Figure_1.jpeg)

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

### The COMET Beamline

![](_page_23_Figure_1.jpeg)

Beamline coordinate system
 Distance along beamline
 Curved sections appear straight

![](_page_23_Picture_3.jpeg)

#### An Intense Muon Beam but Few Backgrounds

![](_page_24_Figure_1.jpeg)

#### An Intense Muon Beam but Few Backgrounds

![](_page_25_Figure_1.jpeg)

### **Bent Solenoid Drifts**

![](_page_26_Figure_1.jpeg)

- Linear field lines
- Uniform B field

![](_page_26_Picture_4.jpeg)

Circular motion about field lines

![](_page_26_Figure_6.jpeg)

- Cylindrical field lines
- Radial gradient in magnetic field

![](_page_26_Picture_9.jpeg)

Circular motion about a drifting centre:

 $\mathsf{D} \propto \frac{\mathsf{p}}{\mathsf{a}\mathsf{B}}\mathsf{f}(\theta)$ 

#### **Bent Solenoid Drifts**

•Remove high momentum muons and pions

• Maintain low momentum muons

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

#### **Bent Solenoid Drifts**

#### (Geant4 Simulation)

![](_page_28_Figure_2.jpeg)

•High momentum particles drift down more than low momentum particles

#### •Additional tunable dipole field

•Can select which momenta remain on-axis

#### **Dipoles and Collimators**

•Remove high momentum muons and pions

• Maintain low momentum muons

![](_page_29_Picture_3.jpeg)

![](_page_29_Figure_4.jpeg)

![](_page_29_Figure_5.jpeg)

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

#### Pulsed Proton Beam Reduces Backgrounds

![](_page_30_Figure_1.jpeg)

Muon lifetime on Aluminium: 864 ns
Pulsed beam removes beam-related backgrounds, typically up to 200 ns
Few protons between pulses as possible:
Extinction factor:

$$\label{eq:Extinction} \begin{split} \text{Extinction} &= \frac{N(\text{Protons between pulse})}{N(\text{Protons in bunch})} \\ \bullet \text{Aiming for } 10^{-9} \end{split}$$

![](_page_30_Figure_4.jpeg)

#### **Phase-II Detection**

![](_page_31_Figure_1.jpeg)

•No line of sight between detector and target

•Select for high momentum electrons using bent solenoid and tuneable dipole field

•Straw Tracker and ECAL detector

The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

#### **Phase-II Detection**

![](_page_32_Figure_1.jpeg)

•No line of sight between detector and target

•Select for high momentum electrons using bent solenoid and tuneable dipole field

•Straw Tracker and ECAL detector

### Bent solenoids + Dipole

• A correcting dipole field allows us to select the momentum that remains on axis. Eg. 105 MeV/c:

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

#### **Momentum Separation**

Bent solenoidal field separates electrons depending on their momentum

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

 $D\propto \frac{p}{aB}f(\theta)$ 

The COMET Experiment, 9 Mar. 2016

#### Ben Krikler: bek07@imperial.ac.uk

#### Phase-II Detector

• Straw Tube Tracker planes + Crystal ECAL • Straw Tracker ⇒ Momentum measurement • ECAL ⇒ Energy measurement • Combination  $\Rightarrow$  PID •Low material budget •High momentum resolution • About 200 KeV/c at 105 MeV/c • Proto-typed in Phase-I

![](_page_35_Picture_2.jpeg)
### **COMET:** Phase-II



The COMET Experiment, 9 Mar. 2016

## Achieving High Sensitivity

Overall Goals •Many stopped muons

•High signal acceptance

•Fewer than 1 expected background events during the run





### Design Considerations

Intense, low-energy muon beam at the target
Low detector occupancy
Low material budget (Stopping Target and Detector)

The COMET Experiment, 9 Mar. 2016

### COMET: Phase-I



#### Pion Capture Section

#### Goals of Phase-I

- Understand production system
- Understand bent solenoid dynamics
- Prototype the detector
- Measurement of background sources
- $\mu$ -e conversion search at:  $3 \times 10^{-15}$



### Backgrounds

From Phase-I TDR (2014)

| Type                                       | Background                                |                             | Predicted number of events per run<br>Phase-I [5] Phase-II [3] |             |
|--------------------------------------------|-------------------------------------------|-----------------------------|----------------------------------------------------------------|-------------|
| Intrinsic                                  | Muon Decay-in-Orbit                       |                             | 0.01                                                           | 0.15        |
|                                            | Radiative Muon Capture                    |                             | 0.00056                                                        | < 0.001     |
|                                            | $\mu^-$ Capture w/ n Emission             |                             | < 0.001                                                        | < 0.001     |
|                                            | $\mu^-$ Capture w/ Charged Part. Emission |                             | < 0.001                                                        | < 0.001     |
| Prompt                                     | Radiative Pion Capture                    |                             | 0.00023                                                        | 0.05        |
| -                                          | Beam Electrons                            |                             | 0.00083                                                        | $< 0.1^{*}$ |
|                                            | Muon Decay in Flight                      |                             | $\leq 0.0002$                                                  | < 0.0002    |
|                                            | Pion Decay in Flight                      |                             | $\leq 0.00023$                                                 | < 0.0001    |
|                                            | Neutron Induced                           |                             | _                                                              | 0.024       |
|                                            | Other beam induced B.G.                   |                             | $< 2.8 	imes 10^{-6}$                                          | _           |
| Delayed                                    | Delayed Radiative Pion Capture            |                             | $\sim 0$                                                       | 0.002       |
| -                                          | Anti-proton Induced                       |                             | 0.007                                                          | 0.007       |
|                                            | Other delayed B.G.                        |                             | $\sim 0$                                                       | _           |
| Cosmic                                     | Cosmic Ray Muons                          |                             | _                                                              | 0.002       |
| Electrons from Cosmic Ray Muons            |                                           | < 0.0001                    | 0.002                                                          |             |
|                                            | Total background                          |                             | 0.019                                                          | 0.34        |
| Signal (Assuming $B = 1 \times 10^{-16}$ ) |                                           | 0.31                        | 3.8                                                            |             |
|                                            | <u> </u>                                  | ,                           |                                                                |             |
| Assume                                     | ed extinction factors:                    |                             | Run times:                                                     |             |
|                                            |                                           |                             | Phase-I: 110 day                                               | vs          |
| Phase-I                                    | : 10 **                                   |                             |                                                                | y 3         |
| Phase-I                                    | I: 10 <sup>-9</sup> (to be updated)       |                             | Phase-II: 1 year                                               |             |
| Experiment, 9 Mar. 201640                  |                                           | Ben Krikle <u>r: bek07@</u> |                                                                |             |

imperial.ac.uk

# COMET Phase-I, Status and R&D

# StrECAL Detector Straw Tracker + ECAL



Phase-II Detector prototypeUsed to characterise beam in Phase-I

The COMET Experiment, 9 Mar. 2016

# Straw Tracker

• Phase-I Straw Design •Based on NA62 Straws with single seam weld Using same production technique •20 micron aluminised mylar •9.8 mm diameter tubes • Phase-II possibilities: •5 mm diameter

•12 micron Al-mylar

#### • Status

• Phase-I production finished (2500 straws) •Aging tests, resolution studies underway The COMET Experiment, 9 Mar. 2016



### **ECAL** StrECAL Trigger and Energy Measurement for PID



### •2272 LYSO Crystals

•Dimensions: 2x2x12 cm

#### •Status:

 Crystal purchasing on-going
 Test bench being built
 Beam tests for resolution studies, PID and DAQ underway
 Calibration system being designed



#### Beam test setup for resolution study



The COMET Experiment, 9 Mar. 2016

# Cylindrical Detector (CyDet)

### Phase-I Physics Measurement



 Cylindrical Drift Chamber (CDC) triggered from hodoscopes made of Cherenkov counters and plastic scintillators

#### • 60 cm inner radius

• Only accept particles with momentum greater than 60 MeV/c

Avoids beam flash and most electrons from bound muon decay

#### • Momentum measurement using drift chamber

Low material budget improves resolution
 All stereo wires to recover Z information
 The COMET Experiment, 9 Mar. 2016



#### **Electrons from Bound Muon Decay**

## Cylindrical Drift Chamber (CDC)







20 layers with alternating stereo angles of ±4°
20,000 wires total
Fully strung as of November 2015
Wire tension checking



The COMET Experiment, 9 Mar. 2016

## **Facility Status and Beamline**





# Building and hall completedPhase-I bent solenoid built and installed







The COMET Experiment, 9 Mar. 2016

## Schedule and Collaboration



14 Countries32 institutes177 participants



The COMET Experiment, 9 Mar. 2016

### Summary

Muon-to-electron conversion is a strong probe of new physics

COMET's staged approach and unique design makes it highly sensitive to this process

Development and construction are well under way COMET Phase-I 2018 Sensitivity <  $3 \times 10^{-15}$  110 days 3.2 kW proton beam

COMET Phase-II 2021 Sensitivity <  $3 \times 10^{-17}$ 1 Year 56 kW proton beam

### Back-ups

### **Muon to Electron Conversion**

#### via Neutrino Oscillation



Although things still aren't especially simple:Cancellations, coherences, form factors

The COMET Experiment, 9 Mar. 2016

### Why an Aluminium Target?







 Maximise atomic lifetime compared to beam flash duration
 Minimise binding and nuclear recoil energies
 Maximise capture branching ratio
 ( Phase-I: Minimise emissions following muon nuclear capture )

### Mu2e



## Mu2e vs COMET

#### •COMET has tunable dipole fields

•Can select during running which momenta are accepted

#### COMET has a staged approach

•Will understand beamline and detector systems at Phase-II thanks to Phase-I knowledge

- •Uncertainty on Pion yield at production target
- •Mu2e will also be able to use COMET Phase-I knowledge

#### •No line-of-sight between COMET Phase-II detector and stopping target

- •Neutral particles are much less of a concern
- •Separation of low to high momentum electrons

#### •COMET runs at a higher beam power

•1 year to achieve same sensitivity

#### •Mu2e can run simultaneously to g-2 and other experiments

COMET uses dedicated accelerator mode so other experiments (eg. T2K / T2HK) wouldn't run

### Production Target

Pion yield for a graphite target at different angles based on HARP data and different hadron codes



Ye Yang, KEK

#### The COMET Experiment, 9 Mar. 2016

55

### Muon Beam: Bent Solenoid Drifts

- Helical centres follow cylindrical fieldlines
   ⇒ Pseudo-electric field radially ⇒ ExB drift
- Gradient in radial direction  $\Rightarrow$  Grad B drift

 $D \propto rac{1}{qB} \Big( rac{p_l^2 + rac{1}{2}p_t^2}{p_l} \Big)$  $\propto \frac{1}{aB} \frac{p}{2} \left( \cos \theta + \frac{1}{\cos \theta} \right)$ 





### Muon Beam Height For Three Different Dipole 1 & Dipole 2 Values

No Dipole 1000 800 600 400 200 **No Dipoles** -200 -600 \_800 -1000 220 Beamline Position (mm 0.055T Dipole 1000 800 600 400 200 0.055 T -200 -400 -600 -800 2200 Beamline Position (mm) 0.11T Dipole



The COMET Experiment, 9 Mar. 2016

### **Muon Beam Dipole Optimsation**



• Sum of Dipole 1 and Dipole 2 should be constant

•Total drift experienced by low energy muons should be the same



The COMET Experiment, 9 Mar. 2016

58

### **Dipole Scan:** Survival Probability

Signal Acceptance Along Beam Axis for Different Dipole Field Strengths



The COMET Experiment, 9 Mar. 2016

### **Energy Losses Before The Detector**



 Probability of a signal electron arriving with momentum less than:

- p(P < 104 MeV/c) = 10%
- p(P < 100 MeV/c) = 6.5%

# Simulating COMET

### Backgrounds at Phase-II

Looking for a rare process:
 A single event if conversion per capture at least: 10<sup>-17</sup>

Need many muons:

• Stopped muons:  $1 \times 10^{18}$  muons • Protons needed:  $2 \times 10^{22}$  protons

And fewer than 1 background event

⇒ Want to understand behaviour of 1 electron coming from 20 quintillion protons

⇒ What things can fake that signal?

### Accurate and Efficient Simulation

#### •Accuracy:

- •Geometry
- •Magnetic Field
- •Physics models
- Hadron production with 8 GeV in backwards direction from Tungsten (and Graphite)
- •Physics of stopped muons

#### •Efficiency:

•Resampling algorithms

 $oldsymbol{O}$ 

### Geometry



Detailed detector and beamline description
 Full experimental hall design for Cosmic Ray studies

The COMET Experiment, 9 Mar. 2016

### Fieldmap



The COMET Experiment, 9 Mar. 2016

### **Custom Physics Models**

#### **Electrons from Bound Muon Decay**



#### **Protons from Muon Nuclear Capture**



The COMET Experiment, 9 Mar. 2016

## Fieldmap (G4Beamline)

Magnitude of field through (5500, 0, 2000)



 No field in detector solenoid

The COMET Experiment, 9 Mar. 2016



The COMET Experiment, 9 Mar. 2016

### **Custom Muon Physics Implementation**



The COMET Experiment, 9 Mar. 2016

### Decay-in-Orbit Spectrum



70 Ben Krikler:

#### Ben Krikler: bek07@imperial.ac.uk

The COMET Experiment, 9 Mar. 2016

### Proton Emission Following Muon Capture AlCap Result



The COMET Experiment, 9 Mar. 2016

### The AlCap Measurement



#### O COMET:

- Osaka University
- IHEP China
- Imperial College London
- University College London
- Mu2e
  Argonne NL
  Boston University
  BNL
  INFN
  Fermilab
  Univ. of Houston
  Univ. of Washington



#### • 3 Runs at PSI:

2013 for charged particles
2015a for neutral particles
2015b for charged particles
### AlCap Work Packages

•WP1: Charged Particle emission after Muon Capture
 •Rate and spectrum with precision 5-10% down to 2.5 MeV
 •Dominant rate in tracker for Mu2e and COMET Phase-I

 •WP2: X-ray and Gamma Emission after Muon Capture
 •X-ray and gamma ray for normalization (by Ge detector), radiative muon decay (by Nal detector)

•WP3: Neutron Emission after Muon Capture
 •Rate and spectrum from 1 MeV up to 10 MeV
 •BG for calorimeters and cosmic-ray veto, damage to electronics

 Run 1 (2013)
 Run 2 (2015)
 Run 3 (2015)

 WP1 and WP2
 WP2 and WP3
 WP1 and WP2

# Run-1: Setup

Lead Shielding

Vacuum Pump

Muon Veto Scintillator

> Neutron Detector (Out-of-image)

tor Left Silicon Detector

The COMET Experiment, 9 Mar. 2016

74

**Right Silicon** 

Detector

Ben Krikler: bek07@imperial.ac.uk

Collimator

Germanium Detector

30 MeV/c, 3-6 KHz

 $\mathcal{L}$ 

Muon Triggers: MuSc, MuPC

Target

# Run-1: Setup





The COMET Experiment, 9 Mar. 2016

Ben Krikler: bek07@imperial.ac.uk

#### Run-1: Datasets

| Target       | Beam Momentum<br>(x28 MeV/c) | Number of Muons<br>(x10 <sup>7</sup> ) | Comments                          |
|--------------|------------------------------|----------------------------------------|-----------------------------------|
| Si (1500 µm) | 1.32                         | 2.78                                   | Active Target                     |
|              | 1.30                         | 28.9                                   | Cross check with existing Si data |
|              | 1.10                         | 13.7                                   |                                   |
| Si (62 µm)   | 1.06                         | 1.72                                   | Passive Target                    |
| Al (100 μm)  | 1.09                         | 29.4                                   |                                   |
|              | 1.07                         | 4.99                                   |                                   |
| Al (50 μm)   | 1.07                         | 88.1                                   |                                   |

## Number of Stopped Muons

- O Germanium detector
   O X-rays from muon electromagnetic cascade to 1s orbital
- Muon selection criteria
   Incoming muon cuts
   Muon scintillator energy
   Muon pile-up protection
   Prompt X-rays (<500ns)</li>

#### • Fit 2p-1s peak at 347 KeV

- Gaussian
- Background:
  - Linear baseline
  - Second Gaussian for nearby Pb/Tl capture peak





## **Charged Particle Measurement**





Identification of Stopped Particle Species using Thin and Thick energy deposits:

 $E_{\text{Thin}} = \frac{dE}{dx} \Delta x$  $E_{\text{Thin}} + E_{\text{Thick}} = E_{\text{Total}}$ 

The COMET Experiment, 9 Mar. 2016

## **Charged Particle Measurement**

#### O Hit selection criteria:

O Time of hit > 100 ns since muon (removes
 scattered muons, lead capture products)

• PID cut

• Geometric

• Probability based on Monte Carlo







#### The COMET Experiment, 9 Mar. 2016

#### Ben Krikler: bek07@imperial.ac.uk

# First Tentative Signs?

•Higgs to Tau-mu

Lepton non-universality:
Muon G-2
Lamb shift in muonic hydrogen
Ratio of BR(B<sub>s</sub> → μμ)/BR(B<sub>s</sub> → ee)
Angular distribution in B<sup>0</sup> → K\*μμ