Recent results from Kaon Physics

Antonino Sergi

CERN

November 2012

Outline

- Yesterday: a brief historical tour (with some news)
 - Kaons and CP
 - Chiral Perturbation Theory
 - CP violation and CPT tests
- Today: latest results
 - Form Factors
 - Rare and radiative decays
 - Lepton universality
- Tomorrow: a new generation of experiments
 - FCNC
 - KoTO, NA62, ORKA

Discovery CP ChPT

Discovery of Kaons

Discovered in the '40s(cosmics) - '50s(lab):

Discovery of Kaons

Discovered in the '40s(cosmics) - '50s(lab):

- Introduction of Strangeness
- K^0 and \overline{K}^0 with the same mass? No
- Weak interactions do not conserve Strangeness

0

- K^0 and \overline{K}^0 are not mass eigenstates
- Assuming *CP* is conserved:

•
$$CP \ K^0 = \overline{K}^0$$

•
$$K_1 = \frac{1}{\sqrt{2}} \left(K^0 + \overline{K}^0 \right)$$

•
$$K_2 = \frac{1}{\sqrt{2}} \left(K^0 - \overline{K}^0 \right)$$

• K_1 and K_2 are CP and (maybe) mass eigenstates

Discovery CP ChPT

Discovery of CP Violation

- If K_1 and K_2 were mass eigenstates
 - K_1 (CP = +1) would not decay in $\pi^+\pi^-\pi^0$ (CP = -1)
 - K_2 (CP = -1) would not decay in $\pi^+\pi^-$ (CP = +1)
 - So the lifetime of K_1 would be << of the K_2 's one (≈ 600 times)
- It's almost true:
 - "Sometimes" " K_2 " decays in $\pi^+\pi^-$
- Then it's not true, therefore:
 - The mass eigenstates are $K_S \in K_L$:

•
$$K_S = K_1 + \epsilon K_2$$

- $K_L = K_2 + \epsilon K_1$
- E *CP* is not conserved

Discovery CP ChPT

CP Violation in the Standard Model

- ϵ is the indirect CP violation (mixing)
- Classical parameters:

•
$$\eta_{+-} = \frac{K_L \to \pi^+ \pi^-}{K_S \to \pi^+ \pi^-} = \epsilon + \epsilon'$$

• $\eta_{00} = \frac{K_L \to \pi^0 \pi^0}{K_S \to \pi^0 \pi^0} = \epsilon - 2\epsilon'$
• $\Delta \phi = \phi_{00} - \phi_{+-} = -3Im(\frac{\epsilon'}{\epsilon})$

- ϵ' is the dirct CP violation (decay)
- All described in the Standard Model by the Kobayashi-Maskawa mechanism, that predicted the third generation of quarks

 $\begin{pmatrix} c_{12}c_{13} & s_{12}s_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix}$

Measuring ϵ and ϵ'

- $\epsilon~O(10^{-3})$
 - η_{+-} or $\eta_{00},$ because $\epsilon' << \epsilon,$ but better in the interference region

•
$$2Re(\epsilon) = \frac{K_L \to \pi^- l^+ \nu - K_L \to \pi^+ l^- \overline{\nu}}{K_L \to \pi^- l^+ \nu + K_L \to \pi^+ l^- \overline{\nu}}$$

- $\epsilon'~O(10^{-6}):$
 - not accessible from the previous measurements

•
$$\left|\frac{\eta_{00}}{\eta_{+-}}\right|^2 = 1 - 6Re(\frac{\epsilon'}{\epsilon})$$

- In practice?
 - ϵ was measured in both ways since '64
 - $\frac{\epsilon'}{\epsilon}$ had to wait the end of '90s

Low energy QCD

- Most kaon decays governed by long distance physics
- Non perturbative QCD
- Chiral Perturbation Theory:
 - effective field theory in terms of QCD Goldstone bosons
 - expansion in powers of momenta and quark masses over $\Lambda_\chi \approx 1~{\rm GeV}$
 - theoretical framework both for (semi)leptonic and nonleptonic decays, including radiative decays
 - $\bullet \ pseudoscalar-octet + electroweak \ operators \\$
 - a set of Low Energy Constants to be extracted from experiments by measuring Form Factors

 ϵ'/ϵ

- Measuring all the 4 decays simultaneously to exploit cancellation of systematics
- NA48 and KTeV were designed to do so:
 - Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0$) with decay regions $\approx 100m$ for both experiments
 - Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)

 Measuring all the 4 decays simultaneously to exploit cancellation of systematics

- NA48 and KTeV were designed to do so:
 - Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0$) with decay regions $\approx 100m$ for both experiments
 - Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)
 - KTeV:

 ϵ'/ϵ

$$Re(\frac{\epsilon'}{\epsilon}) = (2.071 \pm 0.148_{stat} \pm 0.239_{syst})10^{-3} = (2.07 \pm 0.28)10^{-3}$$

• NA48: $Re(\frac{\epsilon'}{\epsilon})=(1.47\pm0.14_{stat}\pm0.09_{stat/syst}\pm0.15_{syst})10^{-3}=(1.47\pm0.22)10^{-3}$

- NA48 and KTeV were designed to do so:
 - Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0$) with decay regions $\approx 100m$ for both experiments
 - Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)
 - KTeV:

 ϵ'/ϵ

$$Re(\frac{\epsilon'}{\epsilon}) = (2.071 \pm 0.148_{stat} \pm 0.239_{syst})10^{-3} = (2.07 \pm 0.28)10^{-3}$$

- NA48: $Re(\frac{\epsilon'}{\epsilon}) = (1.47 \pm 0.14_{stat} \pm 0.09_{stat/syst} \pm 0.15_{syst})10^{-3} = (1.47 \pm 0.22)10^{-3}$
- World average $Re(\frac{\epsilon'}{\epsilon}) = (16.8 \pm 1.4) 10^{-4}$
- Lattice QCD result with poor precision [Phys. Rev. D68 (2003) 114506]
- New approach: using experimental value as input to IQCD [arxiv:1206.5142[hep-lat]]

 $K_S \to \pi^0 \pi^0 \pi^0$

- $\eta_{000} = \frac{K_L \rightarrow 3\pi^0}{K_S \rightarrow 3\pi^0} = \epsilon + \epsilon'_{000}$ ($\epsilon'_{000} = -2\epsilon'$ to lowest order ChPT)
- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- SND (direct search) 1999: $BR(K_S \rightarrow 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \rightarrow 3\pi^0) < 7.4 \times 10^{-7}$
- KLOE (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \rightarrow 3\pi^0) < 2.7 \times 10^{-8}$
- First observation feasible in KLOE-2:
 - new inner tracker
 - small calorimeters for better photon coverage near the interaction point

 $K_S \to \pi^0 \pi^0 \pi^0$

 $K_S \rightarrow \pi^0 \pi^0 \pi^0$

- $\eta_{000} = \frac{K_L \rightarrow 3\pi^0}{K_S \rightarrow 3\pi^0} = \epsilon + \epsilon'_{000}$ ($\epsilon'_{000} = -2\epsilon'$ to lowest order ChPT)
- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- SND (direct search) 1999: $BR(K_S \rightarrow 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \rightarrow 3\pi^0) < 7.4 \times 10^{-7}$
- KLOE (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \rightarrow 3\pi^0) < 2.7 \times 10^{-8}$
- First observation feasible in KLOE-2:
 - new inner tracker
 - small calorimeters for better photon coverage near the interaction point

 $K_S \rightarrow \pi^0 \pi^0 \pi^0$

- $\eta_{000} = \frac{K_L \rightarrow 3\pi^0}{K_S \rightarrow 3\pi^0} = \epsilon + \epsilon'_{000} \ (\epsilon'_{000} = -2\epsilon' \text{ to lowest order ChPT})$
- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- SND (direct search) 1999: $BR(K_S \rightarrow 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \rightarrow 3\pi^0) < 7.4 \times 10^{-7}$
- KLOE (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \rightarrow 3\pi^0) < 2.7 \times 10^{-8}$
- First observation feasible in KLOE-2:
 - new inner tracker
 - small calorimeters for better photon coverage near the interaction point

Charge asymmetries in NA48/2

•
$$\Gamma(K^{\pm} \to \pi^{\pm}\pi\pi) \propto 1 + g \cdot u + h \cdot u^2 + k \cdot v^2$$

•
$$A_g = \frac{g^+ - g^-}{g^+ + g^-}$$
: CPV in decay

• SM expectation
$$O(10^{-5} - 10^{-6})$$

Charge asymmetries in NA48/2

Introduction CPV,CKM ChPT Leptons FCNC Exotic CPV CPT Vus

CPT and quantum mechanics

In the CP-violating process $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

•
$$I(\Delta t) \propto e^{-\Gamma_L \Delta t} + e^{-\Gamma_S \Delta t} - 2(1 - \zeta_{SL})e^{-\frac{\Gamma_L + \Gamma_S}{2}\Delta t}cos(\Delta m \Delta t)$$

•
$$\Delta m = m_{K_L} - m_{K_S}$$
, Δt decay time difference, ζ_{SL} decoherence parameter
• $\rightarrow 2\zeta_{SL} \left(1 - \frac{\Gamma_L + \Gamma_S}{2} \Delta t\right)$, $\Delta t \rightarrow 0$

KLOE:

 $\zeta_{SL} = 0.018 \pm 0.040_{stat} \pm 0.007_{syst}$

[Phys. Lett. B 642 (2006) 315]

Introduction CPV,CKM ChPT Leptons FCNC Exotic CPV CPT Vu:

CPT and Lorentz invariance

Standard Model Extension (SME): a phenomenological effective model providing a framework for CPT and Lorentz violation [Kostelecky PRD61, 016002, PRD64, 076001]

• $\epsilon_{S,L} = \epsilon \pm \delta$

•
$$\delta = i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a}) / \Delta m$$

• Δa_0 , $\Delta \vec{a}$ are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation

Exploiting interferometry:

 $I(\Delta t) \propto |\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1||\eta_2|e^{-\frac{\Gamma_L + \Gamma_S}{2} \Delta t} \cos(\Delta m \Delta t)$

Introduction CPV,CKM ChPT Leptons FCNC Exotic CPV CPT Vu.

CPT and Lorentz invariance

Standard Model Extension (SME): a phenomenological effective model providing a framework for CPT and Lorentz violation [Kostelecky PRD61, 016002, PRD64, 076001]

• $\epsilon_{S,L} = \epsilon \pm \delta$

•
$$\delta = i \sin \phi_{SW} e^{i\phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a}) / \Delta m$$

• Δa_0 , $\Delta \vec{a}$ are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation

Exploiting interferometry:

$$I(\Delta t) \propto |\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1||\eta_2|e^{-\frac{\Gamma_L + \Gamma_S}{2} \Delta t} \cos(\Delta m \Delta t)$$

KLOE with L=1 fb⁻¹ (preliminary): • $\Delta a_x = (-6.3 \pm 6.0) \times 10^{-18}$ GeV • $\Delta a_y = (2.8 \pm 5.8) \times 10^{-18}$ GeV • $\Delta a_z = (2.4 \pm 9.7) \times 10^{-18}$ GeV

KTeV: Δa_x , $\Delta a_y < 9.2 \times 10^{-22}$ GeV

Introduction CPV,CKM ChPT Leptons FCNC Exotic CPV CPT Va

$K_{l3}(K \to \pi^0 e \nu_e, K \to \pi^0 \mu \nu_\mu)$

- $\Gamma(K_{l3(\gamma)}) = \frac{m_K^5 G_F^2}{192\pi^3} C_K^2 S_{EW} |V_{us}|^2 |f_+(0)|^2 I_K^l (1 + 2\delta_{SU(2)}^l + 2\delta_{EM}^l)$ $C_K^2 = 1 \text{ for } K^0, = 1/2 \text{ for } K^{\pm}, S_{EW} = 1.0232 \text{ (short distance EW correction)}$
- from experiments: $\Gamma(K_{l3(\gamma)})$, I_K^l (form factors integral)
- from theory: $f_+(0)$ (hadronic matrix element at $q^2 = 0$), $\delta^l_{SU(2)}$, δ^l_{EM} (SU(2) breaking and long distance EM corrections)
- extraction of $|V_{us}|$ allows to test CKM unitarity: $\Delta_{CKM}\equiv |V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2-1$
- FlaviaNet 2010:

 $|V_{us}| = 0.2254 \pm 0.0013$ $\Delta_{CKM} = -0.0001 \pm 0.0006$

K_{l3} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t)(P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = q^2$
- scalar FF $f_0(t)$ as linear combiation of vector FF: $f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$
- $f_+(0)$ not measurable but $\overline{f}_+(t) = \frac{f_+(t)}{f_+(0)}$, $\overline{f}_0(t) = \frac{f_0(t)}{f_+(0)}$ are accessible

K_{l3} Form Factors

K_{l3} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t)(P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = q^2$
- scalar FF $f_0(t)$ as linear combiation of vector FF: $f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$
- $f_+(0)$ not measurable but $\overline{f}_+(t)=\frac{f_+(t)}{f_+(0)},\ \overline{f}_0(t)=\frac{f_0(t)}{f_+(0)}$ are accessible

Parametrizations:

• Pole: assume the exchange of a vector(1⁻) or scalar (0⁺) resonances ($m_{V,S}$) $\overline{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$

• Linear and quadratic (no physical meaning): $\overline{f}_{+,0}(t) = 1 + \lambda_{+,0} \frac{t}{m_{\pi}^2}$ $\overline{f}_{+,0}(t) = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2$

Radiative

Results from $K \to \pi^0 e \nu_e$, $K \to \pi^0 \mu \nu_\mu$

NA48/2 Preliminary

Quadratic ($\times 10^{-3}$)	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0'
$K \rightarrow \pi^0 \mu \nu_\mu$	$26.3 \pm 3.0_{stat} \pm 2.2_{syst}$	$1.2 \pm 1.1_{stat} \pm 1.1_{syst}$	$15.7 \pm 1.4_{stat} \pm 1.0_{syst}$
$K \rightarrow \pi^0 e \nu_e$	$27.2 \pm 0.7_{stat} \pm 1.1_{syst}$	$0.7 \pm 0.3_{stat} \pm 0.4_{syst}$	
Pole (MeV $/c^2$)	m_V		m_S
Pole (MeV/ c^2) $K \rightarrow \pi^0 \mu \nu_\mu$	$\frac{m_V}{873 \pm 8_{stat} \pm 9_{syst}}$		$\frac{m_S}{1183 \pm 31_{stat} \pm 16_{syst}}$

Antonino Sergi

Combined results from $K \to \pi^0 e \nu_e$, $K \to \pi^0 \mu \nu_\mu$

Quadratic ($ imes 10^{-3}$)	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0'
	26.91 ± 1.11	0.81 ± 0.46	16.23 ± 0.95
Pole (MeV $/c^2$)	m_V		m_S
	877 ± 6		1176 ± 31

 Results for *K*_{e3} and *K*_{μ3} from NA48/2 in good agreement

 High precision preliminary results, competitive with other measurements. Smallest error in the combined result.

K_{e4}

- $K \to \pi^+ \pi^- e \nu_e$, called $K_{e4}(+-)$
- $K \to \pi^0 \pi^0 e \nu_e$, called $K_{e4}(00)$

Five kinematic variables (Cabibbo-Maksymowicz 1965): $s_{\pi} = M_{\pi\pi}^2$ $s_e = M_{e\nu}^2$ $\cos\theta_{\pi}$ $\cos\theta_e$ ϕ

K_{e4} Form Factors

Partial Wave expansion, limited to S and P waves [Pais-Treiman (1968) + Watson theorem (T invariance)]

Partial Wave expansion:

• 2 Axial Form Factors (F and G):

•
$$F = F_s e^{i\delta_s} + F_p e^{i\delta_p} cos\theta_{\pi}$$

• $G = G_p e^{i\delta_p}$

- 1 Vector Form Factors (H):
 - $H = H_p e^{i\delta_p}$

The fit parameters (real) are:

• (+-) F_s , F_p , G_p , H_p , $\delta = \delta_s - \delta_p$ • (+-) F_s only (no P-wave) q^2 dependence can be studied from FF fitted in q^2 bins [J.Phys. G25, (1999) 1607]

$$F_s^2 = f_s^2 \left[1 + \frac{f_s'}{f_s} q^2 + \frac{f_s''}{f_s} q^4 + \frac{f_e'}{f_s} \frac{M_{e\nu}^2}{4m_{\pi}^2} \right]$$

$$rac{G_p}{f_s}=rac{g_p}{f_s}+rac{g_p'}{f_s}q^2$$
, $F_p=f_p$, $H_p=h_p$

$$q^2 = \left[\frac{M_{\pi\pi}^2}{4m_{\pi}^2} - 1\right]$$

$K_{e4}(+-)$ relative Form Factors: fit results (NA48/2)

NA48/2 total statistics (2003 + 2004)

	value	stat	syst
$\frac{f'_s}{f_s}$	0.152	± 0.007	± 0.005
$\frac{f_s''}{f_s}$	-0.073	± 0.007	± 0.006
$\frac{f'_e}{f_s}$	0.068	± 0.006	± 0.007
$\frac{f_p}{f_s}$	-0.048	± 0.003	± 0.004
$\frac{g_p}{f_s}$	0.868	± 0.010	± 0.010
$\frac{g'_p}{f_s}$	0.089	± 0.017	± 0.013
$\frac{h_p}{f_s}$	-0.398	± 0.015	± 0.008

Published in Eur. Phys J. C70 (2010) 635

$K_{e4}(+-)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays as normalization
- number of signal (1.11×10^6) , background (0.95% of K_{e4}) and normalization (1.9×10^9) events
- signal and normalization acceptance (18.19% and 23.97%) and trigger efficiency (98.5% and 97.7%)

•
$$BR(K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = (5.59 \pm 0.04)\%$$

Relative Systematic Uncertainty	(%)
Acceptance, beam geom.	0.18
Muon vetoing	0.16
Accidental activity	0.21
Particle ID	0.09
Background	0.07
Radiative effects	0.08
Trigger efficiency	0.11
Simulation statistics	0.05
Total systematics	0.37
External error $[BR(K_{3\pi})]$	0.72

PDG 2012: $(4.09 \pm 0.10) \times 10^{-5}$

 K^- : first measurement

Published in Physics Letters B 715 (2012) 105

Radiative

$K_{e4}(+-)$ absolute Form Factors (NA48/2)

Over	Overall form factor normalization: $BR[K_{e4}^{\pm}(+-)]$							
f_s	=	5.705	±	0.003_{stat}	±	0.017_{syst}	±	0.031_{norm}
	=	5.705	\pm	0.035_{norm}				
f'_s	=	0.867	\pm	0.040_{stat}	±	0.029_{syst}	\pm	0.005_{norm}
f_s''	=	-0.416	\pm	0.040_{stat}	\pm	0.034_{syst}	\pm	0.003_{norm}
f'_e	=	0.388	\pm	0.034_{stat}	\pm	0.040_{syst}	\pm	0.002_{norm}
f_p	=	-0.274	±	0.017_{stat}	±	0.023_{syst}	±	0.002_{norm}
q_n	=	4.952	\pm	0.057_{stat}	\pm	0.057_{sust}	\pm	0.031_{norm}
g'_p	=	0.508	\pm	0.097_{stat}	±	0.074_{syst}	\pm	0.003_{norm}
$\frac{h_p}{Publi}$	= ished	-2.271	± ics I	0.086_{stat}	$\frac{\pm}{5(20)}$	$\frac{0.046_{syst}}{12)\ 105}$	±	0.014_{norm}
i ubi	Sheu	in i nys			, (20	12/ 100		

Radiative

$K_{e4}(00)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$ decays as normalization
- number of signal (4.49×10^4) , background (1.3% of K_{e4}) and normalization (71×10^6) events
- signal and normalization acceptance (1.77% and 4.11%) and trigger efficiency (92-98%)

•
$$BR(K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}) = (1.761 \pm 0.022)\%$$

Relative Systematic Uncertainty	(%)
Background	0.35
Simulation statistics	0.12
Form factor dependence	0.20
Radiative effects	0.23
Trigger efficiency	0.80
Particle ID	0.10
Beam geometry	0.10
Total systematics	0.94
External error $[BR(K_{3\pi})]$	1.25

PDG 2012: $(2.2 \pm 0.4) \times 10^{-5}$

Preliminary result Analysis in progress

 $BR[K_{e4}^{\pm}(00)] = (2.595 \pm 0.012_{stat} \pm 0.024_{syst} \pm 0.032_{ext}) \times 10^{-5}$

$K_{e4}(+-)$ decay and $\pi\pi$ scattering lengths (NA48/2)

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008] Two statistically independent measurements by NA48/2:

- from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in K_{e4} decay [Eur.Phys.J. C70 (2010) 635]
- from the cusp in $M_{\pi^0\pi^0}$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]
- Different systematics: eletron misID and background vs. calorimeter and trigger
- Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion
- Large overlap in the a_0 , a_2 plane
- Impressive agreement with ChPT

 $K^{\pm} \to \pi^{\pm} \pi^0 \gamma$

- γ from Inner Bremsstrahlung and Direct Emission
- decay amplitude:
 - $T^*_{\pi} = \pi^{\pm}$ kinetic energy

•
$$W^2 = \frac{(p_\pi \cdot p_\gamma)(p_K \cdot p_\gamma)}{m_K^2 m_\pi^2}$$

- integrating T_{π}^* : $\frac{d\Gamma^{\pm}}{dW} =$ $\frac{d\Gamma_{IB}^{\pm}}{\frac{1}{2W}}[1+2m_{K}^{2}m_{\pi}^{2}cos(\pm\phi+\delta_{1}^{1}-\delta_{0}^{1})X_{E}W^{2}+m_{K}^{4}m_{\pi}^{4}(|X_{E}|^{2}+|X_{M}|^{2})W^{4}]$ • IB is known from $K^{\pm} \rightarrow \pi^{\pm}\pi^{0} + \text{QED corrections}$
- DE amplitude contains electric XE and magnetic XM dipole terms
- INT is interference between IB and electric DE (XE) amplitudes
- final NA48/2 results: [EPJC68 (2010) 75]
 - Frac(DE) = $(3.32 \pm 0.15 \pm 0.14)10^{-2}$
 - Frac(INT) = $(-2.35 \pm 0.35 \pm 0.39)10^{-2}$ (first evidence)

•
$$A_{CP} = \left| \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \right| < 1.5 \times 10^{-3}$$
 (first measurement)

Radiative

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 e^+ e^-$ (NA48/2 preliminary)

- Mainly from $K^\pm o \pi^\pm \pi^0 \gamma^* o \pi^\pm \pi^0 e^+ e^-$ [EPJC 72, (2012) 1872]
- DE and INT depend on XE and XM form factors
- First observation

NA48/2 (2003+2004 data):

• ≈ 4500 events in signal region

•
$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}_{D}$$

 $(\pi^{0}_{D} \rightarrow e^{+} e^{-} \gamma_{LOST})$

• $K^{\pm} \rightarrow \pi^{\pm} \pi^0_D$ $(\pi^0_D \rightarrow e^+ e^-) + \gamma_{ACC}$

 $K^{\pm} \to \pi^{\pm} \gamma \gamma$

- BR(z), $z = \frac{m_{\gamma\gamma}^2}{m_K^2}$, depends on a single unknown O(1) parameter ĉ
- BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

 $K^{\pm} \to \pi^{\pm} \gamma \gamma$

• BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079] NA48/2 2004 NA62 2007

 $K^{\pm} \to \pi^{\pm} \gamma \gamma$

• BR(z), $z = \frac{m_{\gamma\gamma}^2}{m_K^2}$, depends on a single unknown O(1) parameter \hat{c} • BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

- ChPT O(p4) fit: $\hat{c}=1.56\pm0.22_{stat}\pm0.07_{syst}=1.56\pm0.23$
- ChPT O(p6) fit: $\hat{c}=2.00\pm0.24_{stat}\pm0.09_{syst}=2.00\pm0.26$
- $BR = (1.01 \pm 0.06) \times 10^{-6}$ (model dependent)

$K \to e \nu_e \gamma \text{ SD} +$

$K \to e \nu_e \gamma \text{ SD} +$

•
$$\frac{d^2\Gamma_{SD}}{dxdy} = \frac{m_K^5 \alpha G_F^2 |V_{us}|^2}{64\pi^2} \left[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y) \right]^2 \frac{2E_{\gamma}^*}{2E_{\gamma}^*} \frac{2E_{$$

•
$$f_{SD+}, f_{SD-}$$
 known kinematics, $x = \frac{2D\gamma}{m_K}, y = \frac{2E_e}{m_K}$

• KLOE 2009: 4% accuracy, compatible with $O(p^4)$ Form Factor (constant) [Eur. Phys. J. C64 (2009) 627]

$K \to e \nu_e \gamma \text{ SD} +$

- NA62 preliminary
- ≈ 10000 event candidates

R_K - LFV test

[PRL 99 (2007), 231801]

R_K - LFV test

- $R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_\mu)}$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001)10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to
 - $K \rightarrow e \nu_e \gamma (IB),$ by definition included into R_K

[PRL 99 (2007), 231801]

R_K - LFV test

•
$$R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_\mu)}$$

- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001) 10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to $K \to e \nu_e \gamma(IB)$, by definition included into R_K

[PRL 99 (2007), 231801]

- Experimentally:
 - $R_K = (2.45 \pm 0.11) 10^{-5}$ (PDG 2008, '70s measurements) $\delta R_K/R_K \approx 4.5\%$
 - $R_K = (2.493 \pm 0.031)10^{-5}$ (KLOE [Eur.Phys.J.C64 (2009) 627]) $\delta R_K/R_K \approx 1.3\%$
 - It's worth to improve it because of its small and well predicted value

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

LFV

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K\approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

LFV

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

From B physics for comparison

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K\approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e} \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

LFV

 π and B have the same effect, but:

- in R_π it's suppressed by $(m_\pi/m_K)^4 \approx 10^{-3}$
- $B \to e \nu_e$ is out of reach and $\frac{B \to \mu \nu_\mu}{B \to \tau \nu_\tau}$ has $\approx 50\%$ enhancement

Final result (full data sample)

Uncertainties

Source	$\delta R_K \times 10^5$
Statistical	0.007
$K \to \mu \nu_{\mu}$	0.004
$K \rightarrow e \nu_e \gamma \ (SD^+)$	0.002
$K ightarrow \pi^0 e u_e$, $K ightarrow \pi \pi^0$	0.003
Beam halo	0.002
Matter composition	0.003
Acceptance	0.002
Positron ID	0.001
DCH alignmnent	0.001
1-track trigger	0.001
Total	0.010

Precision and accuracy

145,958 K_{e2} candidates Positron ID efficiency: $(99.28 \pm 0.05)\%$ $B/(S + B) = (10.95 \pm 0.27)\%$

€ 2.58 ×2.58 ¥ 2.56 R_v vs lepton momentum R_v vs data sample 22.54 ₽2.52 2.5 ₹2.48 2.46 ¥ 2.44 2.42 Integrated over data samples Integrated over lepton momentum 2.4 30 40 50 60 Lepton momentum, GeV/c Data sample

Result

 $R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$

World Average

Golden

$K^{\pm} ightarrow \pi^{\pm} l^+ l^-$ (NA48/2)

$K \to \pi \nu \overline{\nu}$

$K \rightarrow \pi \nu \overline{\nu}$ foreseen experiments

 Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^\pm	Project X 8 GeV	2 ± 10^{14}	250	2018 + 5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018 + 5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016 + 2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018 + 5	1500

$K \rightarrow \pi \nu \overline{\nu}$ foreseen experiments

$K \to \pi \nu \overline{\nu}$ foreseen experiments

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018+5	1500

$K \to \pi \nu \overline{\nu}$ foreseen experiments

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018 + 5	1500

$K \to \pi \overline{\nu} \overline{\overline{\nu}}$ foreseen experiments

$K \to \pi \nu \overline{\nu}$ foreseen experiments

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018 + 5	1500

Golden

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at NA62

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

Golden

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at NA62

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

92% of K decays

- 2 signal regions
- Minimize multiple scattering

Golden

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at NA62

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

92% of K decays

- 2 signal regions
- Minimize multiple scattering

Golden

NA62: beam and experiment layout

State of the art detectors for new precision frontier down to 10^{-12}

- SPS primary protons @ 400 GeV/c
- 75 GeV/c (△P/P ≈ 1%)
- Area @ beam tracker 16 cm²
- Kaon decays/year 4.8×10^{12}

- Unseparated secondary charged beam
- $p/\pi/K$ (positron free, $K \approx 6\%$, $p \approx 23\%$)
- Integrated average rate @ beam tracker 750 MHz

Technical run in 2012 and physics data taking in 2014-2016

$K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{+}$ (NA48/2)

- $\bullet~$ Lepton Number Violating $(\Delta L=2)$ decays
- Look for wrong-sign events in $\pi^\pm\mu^+\mu^-$ data

Summary

- Kaon physics continues to be a good tool for investigation in the flavour sector, ranging from precision measurements as input for effective theory to new observations connected to possible new physics effects
- Chiral Perturbation Theory and experimental determination of form factors provide a constantly improving tool for future precision measurements
- All measurements are currently in agreement with the SM
- A new generation of experiments is starting to explore ultra rare decays, opening a new chapter of tests for the SM and precision measurements previously not accessible:
 - NA62 and KoTO are in construction and will start taking data in the next two years
 - these detectors will be able to improve current measurements