Recent results from Kaon Physics

Antonino Sergi

CERN

November 2012

Outline

- Yesterday: a brief historical tour (with some news)
	- Kaons and CP
	- Chiral Perturbation Theory
	- **CP** violation and CPT tests
- Today: latest results
	- Form Factors
	- Rare and radiative decays
	- Lepton universality
- Tomorrow: a new generation of experiments
	- FCNC
	- KoTO, NA62, ORKA

Discovery of Kaons

Discovered in the '40s(cosmics) - '50s(lab):

Discovery of Kaons

Discovered in the '40s(cosmics) - '50s(lab):

- Introduction of Strangeness
- K^0 and $\overline K^0$ with the same mass? No
- Weak interactions do not conserve Strangeness
- K^0 and $\overline K^0$ are not mass eigenstates
- Assuming CP is conserved:

$$
\bullet \ \ CP \ K^0 = \overline{K}^0
$$

$$
\bullet \ \ K_1 = \tfrac{1}{\sqrt{2}}(K^0 + \overline{K}^0)
$$

•
$$
K_2 = \frac{1}{\sqrt{2}}(K^0 - \overline{K}^0)
$$

• K_1 and K_2 are CP and (maybe) mass eigenstates

[Introduction](#page-2-0) CPV, CKM [ChPT](#page-7-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [Discovery](#page-2-0) [CP](#page-5-0) ChPT

Discovery of CP Violation

- If K_1 and K_2 were mass eigenstates
	- K_{1} $(CP = +1)$ would not decay in $\pi^{+}\pi^{-}\pi^{0}$ $(CP = -1)$
	- K_2 $(CP = -1)$ would not decay in $\pi^+\pi^ (CP = +1)$
	- So the lifetime of K_1 would be $<<$ of the K_2 's one (≈ 600) times)
- \bullet It's almost true:
	- "Sometimes" " K_2 " decays in $\pi^+\pi^-$
- Then it's not true, therefore:
	- The mass eigenstates are K_S e K_L :

$$
\bullet \ \ K_S = K_1 + \epsilon K_2
$$

- $K_L = K_2 + \epsilon K_1$
- \bullet F CP is not conserved

[Introduction](#page-2-0) CPV, CKM [ChPT](#page-7-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [Discovery](#page-2-0) [CP](#page-5-0) ChPT

CP Violation in the Standard Model

- \bullet ϵ is the indirect CP violation (mixing)
- Classical parameters:

\n- \n
$$
\eta_{+-} = \frac{K_L \rightarrow \pi^+ \pi^-}{K_S \rightarrow \pi^+ \pi^-} = \epsilon + \epsilon'
$$
\n
\n- \n
$$
\eta_{00} = \frac{K_L \rightarrow \pi^0 \pi^0}{K_S \rightarrow \pi^0 \pi^0} = \epsilon - 2\epsilon'
$$
\n
\n- \n
$$
\Delta \phi = \phi_{00} - \phi_{+-} = -3Im(\frac{\epsilon'}{\epsilon})
$$
\n
\n

- ϵ' is the dirct CP violation (decay)
- All described in the Standard Model by the Kobayashi-Maskawa mechanism, that predicted the third generation of quarks

 $\sqrt{ }$ \mathcal{L} $c_{12}c_{13}$ s₁₂s₁₃e^{-iδ}CP</sup> $-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}}$ $c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}}$ $s_{23}c_{13}$ $s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} - c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}}$ $c_{23}c_{13}$ \setminus $\overline{}$

Measuring ϵ and ϵ'

- ϵ $O(10^{-3})$
	- η_{+-} or η_{00} , because $\epsilon'<<\epsilon$, but better in the interference region

•
$$
2Re(\epsilon) = \frac{K_L \rightarrow \pi^- l^+ \nu}{K_L \rightarrow \pi^- l^+ \nu + K_L \rightarrow \pi^+ l^- \overline{\nu}}
$$

- ϵ' O(10⁻⁶):
	- not accessible from the previous measurements

$$
\bullet \ |\tfrac{\eta_{00}}{\eta_{+-}}|^2 = 1 - 6 Re(\tfrac{\epsilon'}{\epsilon})
$$

- In practice?
	- ϵ was measured in both ways since '64
	- ϵ' $\frac{\varepsilon^2}{\epsilon}$ had to wait the end of '90s

Low energy QCD

- Most kaon decays governed by long distance physics
- Non perturbative QCD
- • Chiral Perturbation Theory:
	- **e** effective field theory in terms of QCD Goldstone bosons
	- expansion in powers of momenta and quark masses over $\Lambda_{\rm v} \approx 1$ GeV
	- theoretical framework both for (semi)leptonic and nonleptonic decays, including radiative decays
	- pseudoscalar-octet $+$ electroweak operators
	- a set of Low Energy Constants to be extracted from experiments by measuring Form Factors

- Measuring all the 4 decays simultaneously to exploit cancellation of systematics
- • NA48 and KTeV were designed to do so:
	- Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0)$ with decay regions $\approx 100m$ for both experiments
	- Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)

- Measuring all the 4 decays simultaneously to exploit cancellation of systematics
- NA48 and KTeV were designed to do so:
	- Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0)$ with decay regions $\approx 100m$ for both experiments
	- Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)
	- KTeV: $Re(\frac{\epsilon'}{\epsilon})$ $\frac{\epsilon'}{\epsilon}$) = (2.071 ± 0.148_{stat} ± 0.239_{syst})10⁻³ = $(2.07 \pm 0.28)10^{-3}$
	- NA48: $Re(\frac{\epsilon'}{\epsilon})$ $\frac{\epsilon'}{\epsilon}$) = $(1.47 \pm 0.14_{stat} \pm 0.09_{stat/syst} \pm 0.15_{syst})10^{-3}$ = $(1.47 \pm 0.22)10^{-3}$

Measuring all the 4 decays simultaneously to exploit cancellation of systematics

- NA48 and KTeV were designed to do so:
	- Intense K_L beams at high momentum (for $K_L \rightarrow \pi^0 \pi^0)$ with decay regions $\approx 100m$ for both experiments
	- Production of K_S by means of a regenerator (KTeV) or a second target close to the decay region (NA48)
	- KTeV: $Re(\frac{\epsilon'}{\epsilon})$ $\frac{\epsilon'}{\epsilon}$) = (2.071 \pm 0.148_{stat} \pm 0.239_{syst})10⁻³ = $(2.07 \pm 0.28)10^{-3}$
	- NA48: $Re(\frac{\epsilon'}{\epsilon})$ $\frac{e^t}{\epsilon}$) = $(1.47 \pm 0.14_{stat} \pm 0.09_{stat/syst} \pm 0.15_{syst})10^{-3}$ = $(1.47 \pm 0.22)10^{-3}$
- World average $Re(\frac{\epsilon'}{\epsilon})$ $(\frac{\epsilon'}{\epsilon})$ = (16.8 ± 1.4)10⁻⁴
- **•** Lattice QCD result with poor precision [Phys. Rev. D68 (2003) 114506]
- New approach: using experimental value as input to lQCD [arxiv:1206.5142[hep-lat]]

 $K_S \to \pi^0 \pi^0 \pi^0$

•
$$
\eta_{000} = \frac{K_L - 3\pi^0}{K_S - 3\pi^0} = \epsilon + \epsilon'_{000} (\epsilon'_{000} = -2\epsilon'
$$
 to lowest order ChPT)

- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- $\mathsf{SND}\textrm{ (direct search) } 1$ 999: $\mathit{BR}(K_S \to 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \to 3\pi^0) < 7.4 \times 10^{-7}$
- <code>KLOE</code> (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \to 3\pi^0) < 2.7 \times 10^{-8}$
- **•** First observation feasible in KLOE-2:
	- **•** new inner tracker
	- small calorimeters for better photon coverage near the interaction point

 $K_S \to \pi^0 \pi^0 \pi^0$

•
$$
\eta_{000} = \frac{K_L - 3\pi^0}{K_S - 3\pi^0} = \epsilon + \epsilon'_{000} (\epsilon'_{000} = -2\epsilon'
$$
 to lowest order ChPT)

- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- $\mathsf{SND}\textrm{ (direct search) } 1$ 999: $\mathit{BR}(K_S \to 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \to 3\pi^0) < 7.4 \times 10^{-7}$
- <code>KLOE</code> (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \to 3\pi^0) < 2.7 \times 10^{-8}$
- **•** First observation feasible in KLOE-2:
	- **•** new inner tracker
	- small calorimeters for better photon coverage near the interaction point

 $K_S \to \pi^0 \pi^0 \pi^0$

•
$$
\eta_{000} = \frac{K_L - 3\pi^0}{K_S - 3\pi^0} = \epsilon + \epsilon'_{000} (\epsilon'_{000} = -2\epsilon'
$$
 to lowest order ChPT)

- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- $\mathsf{SND}\textrm{ (direct search) } 1$ 999: $\mathit{BR}(K_S \to 3\pi^0) < 1.4 \times 10^{-5}$
- NA48 (interference measurement) 2004: $BR(K_S \to 3\pi^0) < 7.4 \times 10^{-7}$
- <code>KLOE</code> (direct search) 2005: $BR(K_S \rightarrow 3\pi^0) < 1.2 \times 10^{-7}$
- KLOE (direct search) 2012 (full statistics): $BR(K_S \to 3\pi^0) < 2.7 \times 10^{-8}$
- **•** First observation feasible in KLOE-2:
	- **•** new inner tracker
	- small calorimeters for better photon coverage near the interaction point

Charge asymmetries in NA48/2

•
$$
\Gamma(K^{\pm} \to \pi^{\pm} \pi \pi) \propto 1 + g \cdot u + h \cdot u^2 + k \cdot v^2
$$

•
$$
A_g = \frac{g^+ - g^-}{g^+ + g^-}
$$
: CPV in decay

SM expectation $O(10^{-5} - 10^{-6})$

Charge asymmetries in NA48/2

[Introduction](#page-2-0) CPV, CKM CPV, CKM [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) CPV CPT V_{us} V_{us} V_{us}

CPT and quantum mechanics

In the CP-violating process $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

•
$$
I(\Delta t) \propto e^{-\Gamma_L \Delta t} + e^{-\Gamma_S \Delta t} - 2(1 - \zeta_{SL})e^{-\frac{\Gamma_L + \Gamma_S}{2} \Delta t} \cos(\Delta m \Delta t)
$$

 $\Delta m = m_{K_L} - m_{K_S},\, \Delta t$ decay time difference, ζ_{SL} decoherence parameter

$$
\bullet \rightarrow 2\zeta_{SL}\left(1-\frac{\Gamma_L+\Gamma_S}{2}\Delta t\right), \Delta t \rightarrow 0
$$

KLOE:

 $\zeta_{SL} = 0.018 \pm 0.040_{stat} \pm 0.007_{syst}$

[Phys. Lett. B 642 (2006) 315]

[Introduction](#page-2-0) [CPV,CKM](#page-8-0) [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [CPV](#page-8-0) CPT V_{us} V_{us} V_{us}

CPT and Lorentz invariance

Standard Model Extension (SME): a phenomenological effective model providing a framework for CPT and Lorentz violation [Kostelecky PRD61, 016002, PRD64, 076001]

 \bullet $\epsilon_{S,L} = \epsilon \pm \delta$

•
$$
\delta = i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a}) / \Delta m
$$

 $\bullet~\Delta a_0$, $\Delta \vec{a}$ are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation

Exploiting interferometry:

 $I(\Delta t) \propto |\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1||\eta_2|e^{-\frac{\Gamma_L + \Gamma_S}{2}\Delta t} cos(\Delta m \Delta t)$

0.25 $I(\Delta t)$ (a.u) $\eta_1^{+-} = \epsilon (1 - \delta(\vec{p}, t))$ 0.2 $\eta_2^{+-} = \epsilon(1 - \delta(-\vec{p}, t))$ 0.15 \bullet Im(δ) from small Δt 0.1 • $Re(\delta)$ from large Δt 0.05

an example with nearly

 $\Delta t/\tau_c$

equal final states

- 그는 그는 그는 그는 다른 사람이 나는 사람들이 있다.

[Introduction](#page-2-0) [CPV,CKM](#page-8-0) [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [CPV](#page-8-0) CPT $V_{\text{u/s}}$

CPT and Lorentz invariance

Standard Model Extension (SME): a phenomenological effective model providing a framework for CPT and Lorentz violation [Kostelecky PRD61, 016002, PRD64, 076001]

 \bullet $\epsilon_{S,L} = \epsilon \pm \delta$

•
$$
\delta = i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a}) / \Delta m
$$

 \bullet Δa_0 , $\Delta \vec{a}$ are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation

Exploiting interferometry:

$$
I(\Delta t) \propto |\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1||\eta_2|e^{-\frac{\Gamma_L + \Gamma_S}{2} \Delta t} \cos(\Delta m \Delta t)
$$

KLOE with L=1 fb $^{-1}$ (preliminary): $\Delta a = (-6.3 \pm 6.0) \times 10^{-18}$ GeV

$$
\Delta a_x = (-0.5 \pm 0.0) \times 10 \qquad \text{GeV}
$$

\n- $$
\Delta a_y = (2.8 \pm 5.8) \times 10^{-18}
$$
 GeV
\n- $\Delta a_z = (2.4 \pm 9.7) \times 10^{-18}$ GeV
\n

$$
\text{KTeV: } \Delta a_x, \ \Delta a_y < 9.2 \times 10^{-22} \text{ GeV}
$$

[Introduction](#page-2-0) [CPV,CKM](#page-8-0) [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [CPV](#page-8-0) CPT V[us](#page-24-0)

$K_{l3}(K \to \pi^0 e \nu_e, K \to \pi^0 \mu \nu_\mu)$

- $\Gamma(K_{l3(\gamma)}) = \frac{m_K^5 G_F^2}{192\pi^3} C_K^2 S_{EW} |V_{us}|^2 |f+(0)|^2 I_K^l (1+2\delta_{SU(2)}^l + 2\delta_{EM}^l)$ $C_K^2 = 1$ for K^0 , $= 1/2$ for K^{\pm} , $S_{EW} = 1.0232$ (short distance EW correction)
- from experiments: $\Gamma(K_{l3 (\gamma)}), \, I_K^l$ (form factors integral)
- from theory: $f_+(0)$ (hadronic matrix element at $q^2=0$), $\delta_{SU(2)}^{l}$, δ_{EM}^{l} (SU(2) breaking and long distance EM corrections)
- extraction of $|V_{us}|$ allows to test CKM unitarity: $\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$
- **•** FlaviaNet 2010:

 $|V_{us}| = 0.2254 \pm 0.0013$ $\Delta_{CKM} = -0.0001 \pm 0.0006$

K_{13} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t) (P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = q^2$
- scalar FF $f_0(t)$ as linear combiation of vector FF: $f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$ π
- $f_+(0)$ not measurable but $\overline{f}_+(t)=\frac{f_+(t)}{f_+(0)}, \ \overline{f}_0(t)=\frac{f_0(t)}{f_+(0)}$ are accessible

K_{13} Form Factors

K_{13} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t) (P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = q^2$
- scalar FF $f_0(t)$ as linear combiation of vector FF: $f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$ π
- $f_+(0)$ not measurable but $\overline{f}_+(t)=\frac{f_+(t)}{f_+(0)}, \ \overline{f}_0(t)=\frac{f_0(t)}{f_+(0)}$ are accessible

Parametrizations:

Pole: assume the exchange of a vector (1^-) or scalar (0^+) resonances $(m_{V,S})$ $\overline{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$

Linear and quadratic (no physical meaning): $\overline{f}_{+,0}(t) = 1 + \lambda_{+,0} \frac{t}{m_{\pi}^2}$ $\overline{f}_{+,0}(t) = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2$ π π

Results from $K \to \pi^0 e \nu_e$, $K \to \pi^0 \mu \nu_\mu$

NA48/2 Preliminary

Combined results from $K \to \pi^0 e \nu_e$, $K \to \pi^0 \mu \nu_\mu$

 \bullet Results for K_{e3} and $K_{\mu 3}$ from NA48/2 in good agreement

 \bullet High precision preliminary results, competitive with other measurements. **Smallest** error in the combined result.

$$
\bullet\ K\to \pi^+\pi^- e\nu_e,\ \text{called}\ K_{e4}(+-)
$$

•
$$
K \to \pi^0 \pi^0 e \nu_e
$$
, called $K_{e4}(00)$

Five kinematic variables (Cabibbo-Maksymowicz 1965): $s_{\pi} = M_{\pi\pi}^2$ $s_e = M_{e\nu}^2$ $cos\theta_{\pi}$ $cos\theta_e$ ϕ

K_{e4} Form Factors

Partial Wave expansion, limited to S and P waves [Pais-Treiman (1968) + Watson theorem (T invariance)]

Partial Wave expansion:

2 Axial Form Factors (F and G):

\n- $$
F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos\theta_\pi
$$
\n- $G = G_p e^{i\delta_p}$
\n

- 1 Vector Form Factors (H):
	- $H = H_p e^{i\delta_p}$

The fit parameters (real) are:

\n- $$
(+)
$$
 F_s , F_p , G_p , H_p , $\delta = \delta_s - \delta_p$
\n- $(+)$ F_s only (no P-wave)
\n

 q^2 dependence can be studied from FF fitted in q^2 bins [J.Phys. G25, (1999) 1607]

$$
F_s^2 = f_s^2 \left[1 + \frac{f'_s}{f_s} q^2 + \frac{f''_s}{f_s} q^4 + \frac{f'_e}{f_s} \frac{M_{e\nu}^2}{4m_\pi^2} \right]
$$

$$
\frac{G_p}{f_s} = \frac{g_p}{f_s} + \frac{g'_p}{f_s}q^2, F_p = f_p, H_p = h_p
$$

$$
q^2 = \left[\frac{M_{\pi\pi}^2}{4m_\pi^2} - 1\right]
$$

 $K_{e4}(+-)$ relative Form Factors: fit results (NA48/2)

$NA48/2$ total statistics $(2003 + 2004)$

Published in Eur. Phys J. C70 (2010) 635

$K_{e4}(+-)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-$ decays as normalization
- number of signal (1.11×10^6) , background (0.95% of K_{e4}) and normalization (1.9×10^9) events
- **•** signal and normalization acceptance (18.19% and 23.97%) and trigger efficiency (98.5% and 97.7%)

•
$$
BR(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (5.59 \pm 0.04)\%
$$

PDG 2012: $(4.09 \pm 0.10) \times 10^{-5}$

 K^- : first measurement

Physics Letters B 715 (2012) 105

$K_{e4}(+-)$ absolute Form Factors (NA48/2)

$K_{e4}(00)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decays as normalization
- number of signal (4.49×10^4) , background $(1.3\%$ of $K_{e4})$ and normalization (71×10^6) events
- \bullet signal and normalization acceptance (1.77%) and 4.11%) and trigger efficiency (92-98%)

•
$$
BR(K^{\pm} \to \pi^{\pm} \pi^0 \pi^0) = (1.761 \pm 0.022)\%
$$

PDG 2012: $(2.2 \pm 0.4) \times 10^{-5}$

Preliminary result Analysis in progress

 $BR[K_{e4}^{\pm}(00)] = (2.595 \pm 0.012_{stat} \pm 0.024_{syst} \pm 0.032_{ext}) \times 10^{-5}$

$K_{e4}(+-)$ decay and $\pi\pi$ scattering lengths (NA48/2)

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008] Two statistically independent measurements by NA48/2:

- **•** from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in K_{e4} decay [Eur. Phys. J. C70 (2010) 635]
- from the cusp in $M_{\pi^0\pi^0}$ in $K^\pm\to\pi^\pm\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]
- **O** Different systematics: eletron misID and background vs. calorimeter and trigger
- **O** Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion
- **O** Large overlap in the a_0 , a_2 plane
- **Impressive agreement with** ChPT

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$

- γ from Inner Bremsstrahlung and Direct Emission
- o decay amplitude:
	- $T_\pi^*=\pi^\pm$ kinetic energy

$$
\bullet \ W^2 = \tfrac{(p_\pi \cdot p_\gamma)(p_K \cdot p_\gamma)}{m_K^2 m_\pi^2}
$$

integrating T^*_{π} : $\frac{d\Gamma^{\pm}}{dW}$ =

- $\frac{d\Gamma_{IB}^{\pm}}{dW}[1+2m_K^2m_{\pi}^2cos(\pm\phi+\delta_1^1-\delta_0^1)X_EW^2+m_K^4m_{\pi}^4(|X_E|^2+|X_M|^2)W^4]$
- IB is known from $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} + \text{QED}$ corrections
- DE amplitude contains electric XE and magnetic XM dipole terms
- INT is interference between IB and electric DE (XE) amplitudes
- final NA48/2 results: [EPJC68 (2010) 75]
	- Frac(DE) = $(3.32 \pm 0.15 \pm 0.14)10^{-2}$
	- Frac(INT) = $(-2.35 \pm 0.35 \pm 0.39)10^{-2}$ (first evidence)

•
$$
A_{CP} = \left| \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \right| < 1.5 \times 10^{-3}
$$
 (first measurement)

$K^{\pm} \to \pi^{\pm} \pi^0 e^+ e^-$ (NA48/2 preliminary)

- Mainly from $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma^* \rightarrow \pi^{\pm} \pi^0 e^+ e^-$ [EPJC 72, (2012) 1872]
- DE and INT depend on XE and XM form factors \bullet
- **•** First observation

NA48/2 (2003+2004 data):

 $\bullet \approx 4500$ events in signal region

$$
\bullet\ \ K^{\pm}\rightarrow\pi^{\pm}\pi^{0}\pi^{0}_{D}\\ \left(\pi^{0}_{D}\rightarrow e^{+}e^{-}\gamma_{LOST}\right)
$$

 $K^{\pm} \rightarrow \pi^{\pm} \pi^0_D$ $(\pi_D^0 \rightarrow e^+e^-) + \gamma_{ACC}$

 $K^\pm \to \pi^\pm \gamma \gamma$

- $BR(z)$, $z=\frac{m_{\gamma\gamma}^2}{m_K^2}$, depends on a single unknown $O(1)$ parameter ĉ K
- BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997)

 $K^\pm \to \pi^\pm \gamma \gamma$

- $BR(z)$, $z=\frac{m_{\gamma\gamma}^2}{m_K^2}$, depends on a single unknown $O(1)$ parameter ĉ K
- BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

 $K^\pm \to \pi^\pm \gamma \gamma$

- $BR(z)$, $z=\frac{m_{\gamma\gamma}^2}{m_K^2}$, depends on a single unknown $O(1)$ parameter ĉ K
- BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

- ChPT $O(p4)$ fit: $\hat{c}= 1.56 \pm 0.22_{stat} \pm 0.07_{sust} = 1.56 \pm 0.23$
- ChPT $O(p6)$ fit: $\hat{c}= 2.00 \pm 0.24_{stat} \pm 0.09_{syst} = 2.00 \pm 0.26$
- $BR = (1.01 \pm 0.06) \times 10^{-6}$ (model dependent)

$K \to e \nu_e \gamma$ SD+

$K \to e \nu_e \gamma$ SD+

- $\frac{d^2\Gamma_{SD}}{dx dy} = \frac{m_K^5 \alpha G_F^2 |V_{us}|^2}{64\pi^2}$ $\frac{G_F|V_{us}|}{64\pi^2}$ $\left[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y) \right]$ f_{SD+}, f_{SD-} known kinematics, $x = \frac{2E_{\gamma}^{*}}{m_K}, y = \frac{2E_{e}^{*}}{m_K}$
- KLOE 2009: 4% accuracy, compatible with $O(p^4)$ Form Factor (constant) [Eur. Phys. J. C64 (2009) 627]

$K \to e\nu_e\gamma$ SD+

- NA62 preliminary \bullet
- $\bullet \approx 10000$ event candidates

R_K - LFV test

[PRL 99 (2007), 231801]

R_K - LFV test

- $R_K = \frac{\Gamma(K \rightarrow e \nu_e)}{\Gamma(K \rightarrow \mu \nu_e)}$ $\Gamma(K \rightarrow \mu \nu_\mu)$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
	- $R_K = (2.477 \pm 0.001)10^{-5}$
		- **•** Hadronic uncertainties cancel in the ratio
		- \bullet Helicity suppression $\approx 10^{-5}$
		- Radiative correction (few %) due to $K \to e\nu_e \gamma (IB)$, by definition included into R_K

[PRL 99 (2007), 231801]

R_K - LFV test

•
$$
R_K = \frac{\Gamma(K \to e \nu_e)}{\Gamma(K \to \mu \nu_\mu)}
$$

•
$$
BR(K \to e\nu) \approx O(10^{-5})
$$

\n $BR(K \to \mu\nu) \approx 63\%$

 \bullet In the SM:

$$
R_K = (2.477 \pm 0.001) 10^{-5}
$$

- \bullet Hadronic uncertainties cancel in the ratio
- \bullet Helicity suppression $\approx 10^{-5}$
- Radiative correction (few %) due to $K \to e\nu_e \gamma (IB)$, by definition included into R_K

[PRL 99 (2007), 231801]

- **•** Experimentally:
	- $R_K = (2.45 \pm 0.11) 10^{-5}$ (PDG 2008, '70s measurements) $\delta R_K/R_K \approx 4.5\%$
	- $R_K = (2.493 \pm 0.031) 10^{-5}$ (KLOE [Eur.Phys.J.C64 (2009) 627]) $\delta R_K/R_K \approx 1.3\%$
	- It's worth to improve it because of its small and well predicted value

[Introduction](#page-2-0) CPV, CKM [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [LFV](#page-45-0)

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case: $R_K^{MSSM} = R_K^{SM}$ $\left[1+\left(\frac{m_K}{m_H}\right)^4\left(\frac{m_\tau}{m_e}\right)^2|\Delta_{13}|^2\tan^6\beta\right]$ with $m_H = 500$ GeV $/c^2$, $|\Delta_{13}| = 5 \times 10^{-4}$ e $\tan \beta = 40$ $R_{K}^{MSSM} = R_{K}^{SM}(1+0.013)$ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]

[Introduction](#page-2-0) CPV, CKM [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [LFV](#page-45-0)

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case: $R_K^{MSSM} = R_K^{SM}$ $\left[1+\left(\frac{m_K}{m_H}\right)^4\left(\frac{m_\tau}{m_e}\right)^2|\Delta_{13}|^2\tan^6\beta\right]$ with $m_H = 500$ GeV $/c^2$, $|\Delta_{13}| = 5 \times 10^{-4}$ e $\tan \beta = 40$ $R_{K}^{MSSM} = R_{K}^{SM}(1+0.013)$ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]

[Introduction](#page-2-0) [CPV,CKM](#page-8-0) [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0) [LFV](#page-45-0)

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$
\begin{array}{l} R_K^{MSSM} = R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H = 500 \text{GeV}/c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e } \tan \beta = 40 \\ R_K^{MSSM} = R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{array}
$$

From B physics for comparison

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$
\begin{array}{l} R_K^{MSSM} = R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6\beta \right] \\ \text{with } m_H = 500 \text{GeV}/c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ e } \tan\beta = 40 \\ R_K^{MSSM} = R_K^{SM} (1 + 0.013) \text{ [PPD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{array}
$$

 π and B have the same effect, but:

- in R_π it's suppressed by $(m_\pi/m_K)^4 \approx 10^{-3}$
- $B\to e\nu_e$ is out of reach and $\frac{B\to \mu\nu_\mu}{B\to \tau\nu_\tau}$ has $\approx 50\%$ enhancement

Final result (full data sample)

Uncertainties

Precision and accuracy

145,958 K_{e2} candidates Positron ID efficiency: $(99.28 \pm 0.05)\%$ $B/(S + B) = (10.95 \pm 0.27)\%$

$\frac{2.6}{2.2.58}$ $\frac{10.462}{2.58}$
 $\frac{\alpha^{2}}{6}$ 2.56 R_v vs lepton momentum R_k vs data sample 22.54 2.52 5 2.5 2.48 2.46 2.44 2.42 Integrated over data samples | Integrated over lepton momentum 2.4 30 40 50 60
Lepton momentum, GeV/c Data sample

Result

 $R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$

World Average

$K^{\pm} \rightarrow \pi^{\pm} l^+ l^-~\text{(NA48/2)}$

$K \to \pi \nu \overline{\nu}$

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at <code>NA62</code>

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at <code>NA62</code>

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

Missing mass $\theta_{\mathbf{K}\pi}$ K^+ $m_{\text{miss}}^2 = (P_{\kappa} - P_{\pi})^2$

92% of K decays

- 2 signal regions
- Minimize multiple scattering

Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at <code>NA62</code>

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

92% of K decays

- 2 signal regions
- Minimize multiple scattering

NA62: beam and experiment layout

State of the art detectors for new precision frontier down to 10^{-12}

- SPS primary protons @ 400 GeV/c
- . 75 GeV/c ($\Delta P/P \approx 1\%)$
- Area θ beam tracker 16 cm² ۰
- Kaon decays/year 4.8×10^{12}
- **O** Unseparated secondary charged beam
- \bullet $p/\pi/K$ (positron free, $K \approx 6\%$, $p \approx 23\%$)
- Integrated average rate @ beam tracker 750 MHz

Technical run in 2012 and physics data taking in 2014-2016

[Introduction](#page-2-0) [CPV,CKM](#page-8-0) [ChPT](#page-25-0) [Leptons](#page-45-0) [FCNC](#page-54-0) [Exotic](#page-66-0)

 $K^{\pm} \to \pi^\pm \mu^+ \mu^+$ (NA48/2)

- Lepton Number Violating $(\Delta L = 2)$ decays
- Look for wrong-sign events in $\pi^{\pm}\mu^+\mu^-$ data

Summary

- Kaon physics continues to be a good tool for investigation in the flavour sector, ranging from precision measurements as input for effective theory to new observations connected to possible new physics effects
- Chiral Perturbation Theory and experimental determination of form factors provide a constantly improving tool for future precision measurements
- All measurements are currently in agreement with the SM
- A new generation of experiments is starting to explore ultra rare decays, opening a new chapter of tests for the SM and precision measurements previously not accessible:
	- NA62 and KoTO are in construction and will start taking data in the next two years
	- these detectors will be able to improve current measurements