Studying the χ_b states with ATLAS Birmingham HEP Seminar

Andy Chisholm

University of Birmingham

3rd October, 2012

- Introduction to the bottomonium system and some "History"
- Brief review of $b\bar{b}$ spectroscopy
- χ_b studies at ATLAS
- χ_b analyses from DØ and LHCb
- Further opportunities at the LHC

Introduction: What are the χ_b states?

The χ_b represent the spin triplet (S = 1) P-wave (L = 1) states of the bottomonium ($b\bar{b}$) spectrum.

Figure: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

The radiative decays $\chi_b \rightarrow \Upsilon(nS)\gamma$ represent the most experimentally clean channels to reconstruct χ_b at the LHC:

- ▶ The radiative χ_b decays benefit from large branching fractions \checkmark
- $\mathcal{B}(\Upsilon(nS) \to \mu^+ \mu^-)$ is 1-2% and a di-muon signature is clean \checkmark
- ▶ Photons are very soft X (< 1 GeV in X_b rest frame)

PDG Summary (masses rounded to nearest 1 MeV, E_{γ} in rest frame of χ_b)

	Mass [MeV]	E_{γ} [MeV]	$\mathcal{B}(\Upsilon(1S)\gamma)$	E_{γ} [MeV]	$\mathcal{B}(\Upsilon(2S)\gamma)$
$\chi_{b0}(1P)$	9859	391	<6%	-	-
$\chi_{b1}(1P)$	9893	423	35%	-	-
$\chi_{b2}(1P)$	9912	442	22%	-	-
$\chi_{b0}(2P)$	10233	743	1%	207	5%
$\chi_{b1}(2P)$	10255	764	9%	230	21%
$\chi_{b2}(2P)$	10269	777	7%	242	16%

Predictions from QCD inspired potential models:

- 1. Phys. Rev. D 36 3401 (1987)
- 2. Phys. Rev. D 38 279 (1988)
- 3. Eur. Phys. J. C. 4 107 (1998)
- Just below the $B\overline{B}$ threshold (10.558 GeV)
- Narrow, Γ < 1 MeV if...</p>
- ... $\Gamma(\chi_b(3P) \to \Upsilon(1,2,3S)\gamma)/\Gamma_{Tot.}$ is large (expected to be so)
- $\succ \ \Gamma(\Upsilon(3S)\gamma) > \Gamma(\Upsilon(2S)\gamma) > \Gamma(\Upsilon(1S)\gamma)$

Publication	3 ³ <i>P</i> c.o.g	$\Delta 3^3 P_0$	$\Delta 3^3 P_1$	$\Delta 3^3 P_2$
2.	10.520 GeV	-19 MeV	-4 MeV	+6 MeV
3.	10.525 GeV	-22 MeV	-4.9 MeV	+7.3 MeV

History: 1974 - Lederman et al. propose E288

NAL PROPOSAL # 288

Scientific Spokesman:

L. M. Lederman Physics Department Columbia University New York, New York 10027

PTS/Off-net: 212 - 460-0100 280-1754

A Study of Di-Lepton Production in Proton Collisions at NAL

J. A. Appel, M. H. Bourquin, D. C. Hom, L. M. Lederman, J. P. Repellin, H. D. Snyder, J. K. Yoh (Columbia University); B. C. Brown, P. Limon, T. Yamanouchi (NAL).

(Formerly #70 Phase III)

- Observe and measure the spectrum of virtual photons emitted in p-nucleon collisions via the mass distribution of e⁺e⁻ pairs: p + p + e⁺e⁻ + anything. (1) Study characteristics, e.g. parity violation, p₁ behavior.
- Search for structures in the above spectrum, publish these and become famous, e.g. W*, B*.
- Extend the Experiment \$70 study of single leptons in the double arm arrangement, i.e. W[±] etc. Publish these and become famous.

History: 1977 - The CFS Collaboration discover the Υ with E288

"An experimental group at the Fermi National Accelerator Laboratory announced recently that it has discovered a new particle. The new particle has a mass of 9.5 GeV..."

Phys. Rev. Lett. 49, 1612 and 1616 (1982)

- ► First saw evidence of $\Upsilon(3S) \rightarrow \chi_b(2P)\gamma$ (figure)
- ▶ Then observed the $\chi_b(2P) \rightarrow \Upsilon(1,2S)\gamma$

Phys. Rev. Lett. 51, 160 (1983)

► The next year, $\Upsilon(2S) \rightarrow \chi_b(1P)\gamma$ and $\chi_b(1P) \rightarrow \Upsilon(1S)\gamma$ were both observed

Phys. Rev. Lett. 101, 071801 (2008)

• Babar observed $\Upsilon(3S) \rightarrow \eta_b(1S)\gamma$ (left)

Phys. Rev. Lett. 108, 032001 (2012)

▶ Belle observed $\Upsilon(5S) \rightarrow h_b(1, 2P)\pi^+\pi^+$ (below)

All discoveries in the bottomonium system since the Υ made by e^+e^- experiments!

Phys. Rev. Lett. 108, 122001 (2012) (arXiv:1110.2251)

Belle recently reported the observation of two narrow structures in $\pi^{\pm}\Upsilon(nS)$ (n = 1, 2, 3) and $\pi^{\pm}h_b(mS)$ (m = 1,2) pairs produced in association with a single charged pion in $\Upsilon(5S)$ decays!

Quarkonium physics can still surprise us!

FIG. 2: Comparison of fit results (open histogram) with experimental data (points with error bars) for events in the $\Upsilon(1S)$ (a,b), $\Upsilon(2S)$ (c,d), and $\Upsilon(3S)$ (e,f) signal regions. The hatched histogram shows the background component.

The ATLAS Detector at the LHC

The ATLAS detector is a general purpose particle physics detector designed to study physics at the TeV scale:

ATLAS has a diverse physics programme including Higgs Searches, SUSY + Exotics Searches, SM Physics, Heavy Flavour Physics and more! The LHC and ATLAS performed very well throughout 2011:

ATLAS collected **over** 5 fb⁻¹ of data during the 2011 LHC run at $\sqrt{s} = 7$ TeV

Also, over 14 fb⁻¹ collected to date at $\sqrt{s} = 8$ TeV during 2012!

Detector Components I

Inner Detector (ID) ($|\eta| < 2.5$)

 Silicon Pixels and Strips (SCT) with Transition Radiation Tracker (TRT)

Liquid Argon EM Calorimeter ($|\eta| < 3.2$)

 Highly granular and longitudinally segmented in 3-4 layers

A. Chisholm	Studying the χ_b states with ATLAS	12 / 45
-------------	---	---------

Detector Components II

Muon Spectrometer (MS) ($|\eta| < 2.7$)

Toroid Magnet, 4 detector technologies, dedicated tracking and trigger chambers

- Barrel: MDT (Tracking) and RPC (Trigger)
- Endcaps: MDT + CSC (Tracking) and TGC (Trigger)

Observation of a new χ_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS Phys. Rev. Lett. 108, 152001 (2012) (arXiv:1112.5154 [hep-ex])

Radiative χ_b decays are studied with two simultaneous analyses which exploit different reconstruction methods and detectors:

- Photons reconstructed using the EM calorimeter (denoted unconverted)
- ▶ $\gamma \rightarrow e^+e^-$ conversions reconstructed with the Inner Detector (denoted converted)
- Both share a common $\Upsilon \to \mu^+ \mu^-$ selection

The two reconstruction methods have their own advantages and disadvantages. In particular, the minimum $p_{T}(\gamma)$ threshold (2.5 GeV and 1.0 GeV respectively) determines which radiative decays can be reconstructed:

- ► The unconverted photon analysis is capable of reconstructing $\chi_b \rightarrow \Upsilon(1S) \gamma$ decays alone
- The converted photon analysis is capable of reconstructing both *χ_b* → Υ(1*S*) γ and *χ_b* → Υ(2*S*) γ decays

Data Sample and Trigger Selection

The analysis uses 4.4 fb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV recorded throughout the 2011 LHC run:

Trigger Strategy:

- Events containing radiative χ_b decays are triggered by the di-muon decay $\Upsilon \rightarrow \mu^+ \mu^-$ (the photons are too soft to trigger the event)
- The trigger records events which contain di-muon pairs or single high p_T muons
- ► The majority of events are selected by dedicated \(\U03c4 → \mu^+ \mu^-\) di-muon triggers (blue shaded histograms)

Common Υ Selection

Selection of $\Upsilon(1,2S) \rightarrow \mu^+ \mu^-$ candidates is common to both the unconverted and converted photon analyses:

Muon Selection

- ▶ p_T(µ[±]) > 4.0 GeV
- |η(μ[±])| < 2.3
 </p>
- Reconstructed from track in ID combined with MS track
- $\Upsilon \to \mu^+ \mu^-$ Selection
 - Oppositely charged di-muon pair
 - $\mu^+\mu^-$ common vertex fit $\chi^2/N_{D.o.F} < 20$
 - $p_T(\mu^+\mu^-) > 12 \text{ GeV}$
 - Rapidity $|y(\mu^+\mu^-)| < 2.0$
 - Both muons associated to same primary pp interaction

 $\frac{\Upsilon \to \mu^+ \mu^- \text{ invariant mass selection}}{\blacktriangleright \text{ A - } \Upsilon(1S): 9.25 < m(\mu^+ \mu^-) < 9.65 \text{ GeV}}$ $\blacktriangleright \text{ B - } \Upsilon(2S): 9.80 < m(\mu^+ \mu^-) < 10.10 \text{ GeV}$ A. Chisholm Studying the χ_b states with ATLAS 16 / 45

Unconverted Photon Analysis

An event containing a candidate $\chi_b\to\Upsilon\gamma$ decay in which the photon is unconverted

Unconverted Photon Selection

EM calorimeter energy deposits not matched to any track are considered as **unconverted** photon candidates:

- ► E_T(γ) > 2.5 GeV
- ▶ $|\eta(\gamma)| < 2.37$ (Barrel-Endcap transition region $1.37 < |\eta| < 1.52$ excluded)
- "Loose"[†] photon ID selection: Including limits on hadronic leakage and requirements on the EM shower shape (designed to reject backgrounds from narrow jets and π⁰ decays)

Unconverted Photon Pointing Correction

- The polar angle of the photon 3-vector is corrected to point back to μ⁺μ⁻ vertex
- ► Loose cut of \u03c0²/N_{D.o.F} < 200 rejects photons not compatible with having originated from the \u03c0⁺\u03c0⁻ vertex

 $\chi_b \to \Upsilon(1S) \gamma$ Selection

► Reconstructed $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ candidates are associated with corrected unconverted photons to form χ_b candidates

[†]Described in detail in: Phys. Rev. D 83, 052005 (2011) (arXiv:1012.4389)

Unconverted Photon Result I

The resulting $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(1S)}^{PDG}$ distribution exhibits three peaks:

- ► Final selection of p_T(µ⁺µ⁻) > 20 GeV chosen to maximise X_b(1P) and X_b(2P) significance irrespective of effect on the third peak
- Statistical significance of third signal is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)

An extended unbinned maximum likelihood fit is performed to the $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(1S)}^{PDG}$ distribution to extract an estimate of the $\chi_b(3P)$ mass barycentre:

Fit Model

- **Signal:** Single Gaussian for each $\chi_b(nP)$ peak, each with a free mean value and width
- Background: Described by exp (A · (ΔM) + B · (ΔM)⁻²) where A and B are free parameters

Assigned Systematic Uncertainties

- Unconverted photon energy scale uncertainty (estimated at ±2% of the ΔM position)
- Modelling of the background distribution (estimated from refitting with various alternative models)

	Fitted Mass (MeV)
$\chi_b(1P)$	$9910\pm 6~(ext{stat.})\pm 11~(ext{syst.})$
$\chi_b(2P)$	$10246\pm5~(ext{stat.})\pm18~(ext{syst.})$
$\chi_b(3P)$	10541 ± 11 (stat.) \pm 30 (syst.)

The statistical significance of third signal remains greater than 6σ with each systematic variation

Left: $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(1S)}^{PDG}$ distribution without a lower $p_T(\mu^+\mu^-) > 8$ GeV cut.

Right: Unconverted photon $p_T(\gamma)s$ distribution for $\Upsilon(1S)\gamma$ candidates.

Converted Photon Analysis

An event containing a candidate $\chi_b o \Upsilon \gamma$ decay in which the photon has converted ($\gamma o e^+ e^-$)

Converted Photon Selection I

Reconstructing photons from e^+e^- conversions in the Inner Detector (ID) offers improved resolution and access to softer photons:

- Reconstructed from ID measurements *alone* (no EM cluster matching)
- Minimum track momentum p_T(e[±]) > 500 MeV
- ▶ $p_T(\gamma) > 1$ GeV
- |η(γ)| < 2.3</p>
- Only two-track conversions are retained
- 4 silicon detector hits required for each electron track

- Candidate electron tracks must not already be selected as di-muon candidate tracks
- ▶ Radius of conversion vertex R > 40 mm to reduce background contamination

Converted Photon Selection II

The 3D impact parameter of the converted photon with respect to the di-muon vertex, a_0 , is a powerful variable which can be used to select photons associated with the di-muon vertex:

▶ a₀ < 2 mm is required to reject photon combinatorics not compatible with having originated from the di-muon vertex

• The χ^2 probability of the conversion vertex fit is required to be greater than 0.01

Both the $\chi_b \to \Upsilon(1S) \gamma$ and $\chi_b \to \Upsilon(2S) \gamma$ distributions are shown together:

- Statistical significance of the third signal (around 10.5 GeV) is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)
- Data points are not corrected for energy losses due to Bremsstrahlung (taken into account in fit)

Under the interpretation of the third signal as $\chi_b(3P)$, the experimental mass barycentre is measured from a simultaneous unbinned extended maximum likelihood fit to both the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ mass distributions:

 The simultaneous fit allows a number of parameters to be shared across the two samples to help constrain the model, with additional constraints applied from the known masses (PDG)

Fit Model:

- As the J = 0 branching fraction is significantly smaller than for J = 1, 2 its contribution can be neglected
- The \u03c6_b(nP) state is therefore modelled by two Crystal Ball (CB) functions to describe the low-mass Bremsstrahlung tail
- ▶ For n = 1, 2, the masses of the individual J=1,2 states are fixed to the known PDG values, and for n=3 the hyperfine splitting is fixed to the theoretically predicted value of 12 MeV
- ▶ The relative normalisations of the J=1 and J=2 components are fixed to be equal
- A free parameter λ , common to all the peaks, accounts for additional energy losses and appears in the form $\overline{\Delta m} \cdot \lambda$
- The background is modelled by $(\Delta m q_0)^{\alpha} \cdot \exp \{(\Delta m q_0) \cdot \beta\}$

- For demonstration, $\sigma = 20$ MeV (i.e. 1P J = 1, 2 splitting)
- No knowledge of $\sigma \cdot \mathcal{B}$ for any of the states
- Relative normalisation of \(\chi_{b1}\) and \(\chi_{b2}\) components is fixed to be equal\)

Converted Photon Result II

Assigned Systematic Uncertainties:

- ▶ Vary relative J = 1, 2 signal normalisation by ± 0.25 (or left free in fit): ± 5 MeV
- Alternative signal and background models: ±5 MeV
- Decoupled fits to the $\Upsilon(1S)$ and $\Upsilon(2S)$ distributions: ± 5 MeV
- Individually releasing constraints to the PDG values for the $\chi_b(1P)$ and $\chi_b(2P)$ masses: ± 3 MeV

Fit Result:

- Energy scale factor $\lambda = 0.961 \pm 0.003$
- Experimental mass barycentre for $\chi_b(3P)$ signal determined by fit to converted photon candidates **alone** is:

$$\overline{m}_3 = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$$
 GeV

Demonstration of J = 1, 2 Normalisation Systematic

Fit result is not very sensitive to J = 1, 2 normalisation as $\sigma \sim \Delta M_{12}$

- Bye eye, difficult to notice any difference in the shape of the composite PDF!
- ▶ Reflected in small systematic shift in measured mass (±5 MeV)

Relative Acceptance

Large difference in acceptance between the three states due to minimum $p_T(\gamma)$ reconstruction threshold:

- Converted photons have much larger acceptance for all decays at low $p_T(\Upsilon)$
- Unconverted photons have a much reduced acceptance due to the $p_T(\gamma) > 2.5$ GeV reconstruction threshold

30 / 45

Summary

- The known χ_b(1, 2P) states are observed in radiative decays to Υ(1S) γ
- A new structure at a higher mass is also observed in the Υ(1S) γ and Υ(2S) γ spectra
- The interpretation of this as the \$\chi_b(3P)\$ states is consistent with theoretical predictions
- The mass of the structure is measured with two separate analyses using converted and unconverted photons with compatible results
- The mass measurement with smaller systematic uncertainties from the converted photon analysis is chosen to represent the final measurement

Observed bottomonium radiative decays in ATLAS, L = 4.4 fb¹

Confirmation by DØ

Shortly after the publication of the ATLAS result, the $D\emptyset$ collaboration confirmed the observation of a new structure in the $\Upsilon(1S)\gamma$ mass spectrum:

Observation of a narrow state decaying into $\Upsilon(1S) + \gamma$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV Phys. Rev. D 86, 031103(R) (2012) (arXiv:1203.6034 [hep-ex])

"...a third peak is observed at a mass consistent with the new state observed by the ATLAS collaboration."

 $\overline{m}_3 = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.) GeV}$

A. Chisholm

Studying the χ_b states with ATLAS

32 / 45

Confirmation by DØ

A. Chisholm

Confirmation by LHCb

LHCb later confirmed the observation at ICHEP2012 in a preliminary conference note:

Observation of the $\chi_b(3P)$ state at LHCb in *pp* collisions at $\sqrt{s} = 7$ TeV LHCb-CONF-2012-020

"Three peaks are clearly visible, corresponding to the $\chi_b(1P)$, $\chi_b(2P)$, and the new $\chi_b(3P)$ state recently observed by the ATLAS experiment and confirmed by $D\emptyset$."

 $\overline{m}_3 = 10.535 \pm 0.010 \text{ (stat.) GeV}$

Studying the χ_b states with ATLAS

[†]Nothing to do with the PDG, ATLAS, *DØ* or LHCb!

Some Renewed Theoretical Interest

Summary of theoretical work prompted by the observation of the $\chi_b(3P)$ candidate:

- Potential model results for the newly discovered $\chi_b(3P)$ states
- arXiv:1201.4096
- Production of X_b mesons at LHC
- arXiv:1203.4893
- Comment on "Observation of a New χ_b State in Radiative Transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS"
- arXiv:1204.1984
- Developments in heavy quarkonium spectroscopy
- arXiv:1205.4189
- $\chi_b(3P)$ splitting predictions in potential models
- arXiv:1208.2186

Perhaps the most important implication:

- Another source of feed down into the inclusive $\Upsilon(nS)$ cross section
- The inclusive Υ(3S) cross section was previously thought to be free from significant feed down, B(X_b(3P) → Υ(3S)γ) expected to be large

You may need to squint!

- Investigate with a crude model and purely qualitative analysis!
- Relative normalisation of J = 0, 1, 2 taken from PDG branching fractions (assume equal production ratio and assume 2P values for 3P)
- ▶ Relative production of n = 1, 2, 3 taken from recent ATLAS Υ production paper
- \blacktriangleright No acceptance effects, resolution modelled by CB with various different Gaussian widths σ

 Mass resolution of around 5 MeV very challenging at the LHC (for ATLAS at least!)

What next?

Important to look in other channels!

The (non-)observation of the new state in other decays could shed more light on its nature and confirm / rule out the $\chi_b(3P)$ interpretation. Some channels that might be possible at the LHC include:

- $\blacktriangleright \ \chi_b \to \Upsilon + \omega$
- $\blacktriangleright \ \chi_b \to \Upsilon + \Phi$
- $\blacktriangleright \ \chi_b \to J/\psi J/\psi$
- Other VV final states?

Cross section (1, 2P) and 3P $\sigma \cdot \mathcal{B}(\chi_b(3P) \to \Upsilon(1S)\gamma)$ measurements

Possible with 2012 dataset

Spin, Parity and Polarization measurements

- Likely to require more data, complex analyses...
- ► Polarization is accessible through an angular analysis of final state di-muons in X_b → Υ(nS)γ (arXiv:1103.4882)

 $\chi_b \to \Upsilon(1S) \, \omega$

CLEO has observed $\chi_b(2P) \rightarrow \Upsilon(1S) \omega$ decays (Phys. Rev. Lett. 92, 222002 (2004))

• Only $\chi_{b1}(2P)$ and $\chi_{b2}(2P)$ are above the $\Upsilon(1S)\omega$ threshold

$$\blacktriangleright \ \mathcal{B}(\chi_b(2P) \to \Upsilon(1S)\,\omega) = 1 - 2\% ! \checkmark$$

• ω momentum in χ_b rest frame only 135(94) MeV! X

Bottom Line - Low acceptance with ATLAS, huge backgrounds! Possible with LHCb?

40 / 45

$\chi_b \to \Upsilon(1S) \phi(1020)$

The new state at 10.53 GeV is above the $\Upsilon(1S) \phi(1020)$ threshold...

- Not yet observed...
- ▶ $\mathcal{B}(\chi_b(3P) \to \Upsilon(1S) \phi)$ not measured or calculated! (as far as I am aware) ×
- ▶ High acceptance with $\phi \to K^+K^-$ ($\mathcal{B}(\phi \to K^+K^-)$ is also large ~ 50%) √
- $\Upsilon(1S) + 2$ tracks with ATLAS's limited PID might be messy! X

Bottom Line - \mathcal{B} may be very low! LHCb (with good PID) more sensitive?

 $\chi_{\rm b} \to {\rm J}/\psi \, {\rm J}/\psi$

$\chi_b \to J/\psi \, J/\psi$: a potentially a very clean signal at the LHC

- ▶ 4 Lepton (4 μ more realistic at low p_T) very clean, low background \checkmark
- ▶ $\chi_{b1} \rightarrow J/\psi J/\psi$ is Landau-Yang forbidden, $\Delta m_{0,2} \approx 53$ MeV large enough to be resolved? \checkmark
- ▶ $\mathcal{B}(\chi_{b0} \rightarrow J/\psi J/\psi) \approx 2 \times 10^{-4}$ (Phys. Rev. **D72** (2005) 094018) 🗡

$$\blacktriangleright~ {\cal B}(J/\psi o \mu^+\mu^-)^2 pprox 3.6 imes 10^{-3}$$
 🗡

The inclusive cross section for χ_{b0} at the LHC is estimated to be as much as $\sigma(pp \rightarrow \chi_{b0} + X) \approx 1 \mu b$:

- Rough estimate of 700 events per fb⁻¹ (before trigger, acceptance and reconstruction)
- Strong potential for observation with > 20fb⁻¹ from 2011 + 2012 (ATLAS / CMS)

 $\chi_b \to J/\psi J/\psi$

Estimates suggest a large raw event yield, but how many χ_b are likely to be reconstructed?

▶ Require $p_T(\mu) > 6$ GeV for triggered J/ψ and $p_T(\mu) > 4$ GeV for the other with all muons required to be within $|\eta(\mu)| < 2.5$

- Acceptance and trigger thresholds allow only very boosted ($p_T > 20 GeV$) χ_b to be reconstructed
- \blacktriangleright This will significantly (factor of \sim 100) reduce the yields on the previous slide!

Bottom Line - Likely to need 10s fb⁻¹ data for an observation, possible in 2012?

A. Chisholm	Studying the χ_b states with ATLAS	43 / 45
-------------	---	---------

Conclusion

- The known X_b(1, 2P) states are observed in radiative decays to Υ(1S) γ at ATLAS
- A new structure at a higher mass is also observed in the Υ(1S) γ and Υ(2S) γ spectra
- ► The interpretation of this as the X_b(3P) states is consistent with theoretical predictions
- Many more interesting opportunities at the LHC!

Thank you for listening!

 $\chi_{\textit{c}}$ at the LHC

