Studying the X_b states with ATLAS Birmingham HEP Seminar

Andy Chisholm

University of Birmingham

3rd October, 2012

- Introduction to the bottomonium system and some "History"
- \triangleright Brief review of $b\bar{b}$ spectroscopy
- \triangleright χ _b studies at ATLAS
- \triangleright χ _b analyses from DØ and LHCb
- \blacktriangleright Further opportunities at the LHC

Introduction: What are the χ_h states?

The χ_b represent the spin triplet $(S = 1)$ P-wave $(L = 1)$ states of the bottomonium $(b\bar{b})$ spectrum.

Figure: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

The radiative decays $\chi_b \to \Upsilon(nS)\gamma$ represent the most experimentally clean channels to reconstruct χ_b at the LHC:

- **IF** The radiative χ_b decays benefit from large branching fractions \checkmark
- $\blacktriangleright~\mathcal{B}(\Upsilon(nS) \to \mu^+\mu^-)$ is $1-2\%$ and a di-muon signature is clean \checkmark
- ▶ Photons are very soft \boldsymbol{X} (< 1 GeV in χ_b rest frame)

PDG Summary (masses rounded to nearest 1 MeV, E_{γ} in rest frame of χ_b)

	Mass [MeV]	E_{γ} [MeV]	$\mathcal{B}(\Upsilon(15)\gamma)$	E_{γ} [MeV]	$\mathcal{B}(\Upsilon(2S)\gamma)$
$\chi_{b0}(1P)$	9859	391	${<}6\%$		
$\chi_{b1}(1P)$	9893	423	35%		
$\chi_{b2}(1P)$	9912	442	22%		
$\chi_{b0}(2P)$	10233	743	1%	207	5%
$\chi_{b1}(2P)$	10255	764	9%	230	21%
$\chi_{b2}(2P)$	10269	777	7%	242	16%

Predictions from QCD inspired potential models:

- 1. Phys. Rev. D 36 3401 (1987)
- 2. Phys. Rev. D 38 279 (1988)
- 3. Eur. Phys. J. C. 4 107 (1998)
- In Just below the $B\bar{B}$ threshold (10.558 GeV)
- \blacktriangleright Narrow, $\Gamma < 1$ MeV if...
- \blacktriangleright ...Γ $(\chi_b(3P) \to \Upsilon(1,2,3S) \gamma) /$ Γ $_{Tot.}$ is large (expected to be so)
- \blacktriangleright Γ(Υ(3S) γ) > Γ(Υ(2S) γ) > Γ(Υ(1S) γ)

History: 1974 - Lederman et al. propose E288

NAL PROPOSAL # 288

Scientific Spokesman:

L. M. Lederman Physics Department Columbia University New York, New York 10027

 $FTS/Off-net: 212 - 460 - 0100$ $280 - 1754$ MSS ...

A Study of Di-Lepton Production in Proton Collisions at NAT.

J. A. Appel, M. H. Bourquin, D. C. Hom, L. M. Lederman, J. P. Repellin, H. D. Snyder, J. K. Yoh (Columbia University); B. C. Brown, P. Limon, T. Yamanouchi (NAL).

(Formerly #70 Phase III)

- $1.$ Observe and measure the spectrum of virtual photons emitted in p-nucleon collisions via the mass distribution of e + anything. pairs: (1) Study characteristics, e.g. parity violation, p, behavior.
- $2.$ Search for structures in the above spectrum, publish these and become famous, e.g. W°, B°.
- 5.1 Extend the Experiment #70 study of single leptons in the double arm arrangement, i.e. w^{\pm} etc. Publish these and become famous.

History: 1977 - The CFS Collaboration discover the Υ with E288

"An experimental group at the Fermi National Accelerator Laboratory announced recently that it has discovered a new particle. The new particle has a mass of 9.5 GeV..."

 \sim y, as described in the text. (b) The experimental in the experimental \sim

posed on hadronic events which are then pro-

Phys. Rev. Lett. 49, 1612 and 1616 (1982)

- First saw evidence of $\Upsilon(3S) \rightarrow \chi_b(2P)\gamma$ (figure)
- **Figure 1** Then observed the $\chi_b(2P) \to \Upsilon(1, 2S)\gamma$

Phys. Rev. Lett. 51, 160 (1983)

I The next year, $\Upsilon(2S) \rightarrow \chi_b(1P)\gamma$ and $\chi_b(1P) \to \Upsilon(1S)\gamma$ were both observed

Phys. Rev. Lett. 101, 071801 (2008)

 \blacktriangleright Babar observed $\Upsilon(3S) \to \eta_b(1S) \gamma$ (left)

Phys. Rev. Lett. 108, 032001 (2012) \ldots setting the ISR \ldots

 \blacktriangleright Belle observed $\Upsilon(5S) \to h_b(1, 2P) \pi^+ \pi^+$ the η^b width variation. (below) \mathbf{v} obtained from a fit and from a fit and fit and from a fit with the nominal fit with the nominal fit with the \mathbf{v}

All discoveries in the bottomonium system since the Υ made by e^+e^- experiments! ⁰.6+1.⁴ [−]1.0)MeV/c², respectively. Using the world average the upper limit for the upper limit for the upper limit \mathcal{L}

fine splittings to be [∆]MHF =(+1.⁶ [±] ¹.5) MeV/c² and

Phys. Rev. Lett. 108, 122001 (2012) (arXiv:1110.2251)

Belle recently reported the observation of two narrow structures in $\pi^{\pm}\Upsilon(nS)$ (n $=$ 1, 2, 3) and $\pi^{\pm}h_{b}(mS)$ $(m=1,2)$ pairs produced in association with a single charged pion in $\Upsilon(5S)$ decays!

Quarkonium physics can still surprise us!

FIG. 2: Comparison of fit results (open histogram) with experimental data (points with error bars) for events in the $\Upsilon(1S)(a,b)$, $\Upsilon(2S)(c,d)$, and $\Upsilon(3S)(e,f)$ signal regions. The hatched histogram shows the background component.

The ATLAS Detector at the LHC

The ATLAS detector is a general purpose particle physics detector designed to study physics at the TeV scale:

ATLAS has a diverse physics programme including Higgs Searches, SUSY + Exotics Searches, SM Physics, Heavy Flavour Physics and more!

The LHC and ATLAS performed very well throughout 2011:

ATLAS collected **OVER** 5 fb^{-1} of data during the 2011 LHC run or uata during
at $\sqrt{s} = 7$ TeV

Also, over $\bf 14\ fb^{-1}$ collected to Also, over $\frac{1}{1}$ to collected to date at $\sqrt{s} = 8$ TeV during 2012!

Detector Components I

Inner Detector (ID) $(|\eta| < 2.5)$

 \triangleright Silicon Pixels and Strips (SCT) with Transition Radiation Tracker (TRT)

Liquid Argon EM Calorimeter $(|\eta| < 3.2)$

Highly granular and **longitudinally** segmented in 3-4 layers

Detector Components II

Muon Spectrometer (MS) ($|\eta|$ < 2.7)

 \triangleright Toroid Magnet, 4 detector technologies, dedicated tracking and trigger chambers

- ▶ Barrel: MDT (Tracking) and RPC (Trigger)
- \triangleright Endcaps: MDT + CSC (Tracking) and TGC (Trigger)

Observation of a new X_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS Phys. Rev. Lett. 108, 152001 (2012) (arXiv:1112.5154 [hep-ex])

Radiative χ_b decays are studied with two simultaneous analyses which exploit different reconstruction methods and detectors:

- ▶ Photons reconstructed using the EM calorimeter (denoted unconverted)
- $\blacktriangleright \ \gamma \rightarrow e^+e^-$ conversions reconstructed with the Inner Detector (denoted converted)
- ► Both share a common $\Upsilon \to \mu^+ \mu^-$ selection

The two reconstruction methods have their own advantages and disadvantages. In particular, the minimum $p_T(\gamma)$ threshold (2.5 GeV and 1.0 GeV respectively) determines which radiative decays can be reconstructed:

- **I** The unconverted photon analysis is capable of reconstructing $\chi_b \to \Upsilon(1S) \gamma$ decays alone
- **IF The converted photon analysis is capable of reconstructing both** $\chi_b \to \Upsilon(1S) \gamma$ and $X_b \rightarrow \Upsilon(2S) \gamma$ decays

Data Sample and Trigger Selection

The analysis uses 4.4 fb $^{-1}$ of ρp collision data at $\sqrt{s}=7$ TeV recorded throughout the 2011 LHC run:

Trigger Strategy:

- Events containing radiative X_b decays are triggered by the di-muon decay $\Upsilon \rightarrow \mu^+\mu^-$ (the photons are too soft to trigger the event)
- In The trigger records events which contain di-muon pairs or single high p_T muons
- ▶ The majority of events are selected by dedicated $\Upsilon\to \mu^+\mu^-$ di-muon triggers (blue shaded histograms)

Common Υ Selection

Selection of $\Upsilon(1,2S) \to \mu^+\mu^-$ candidates is common to both the unconverted and converted photon analyses:

Muon Selection

- \blacktriangleright $p_{\mathcal{T}}(\mu^{\pm}) >$ 4.0 GeV
- \blacktriangleright $|\eta(\mu^{\pm})|$ < 2.3
- Reconstructed from track in ID combined with MS track
- $\Upsilon \rightarrow \mu^+ \mu^-$ Selection
	- \triangleright Oppositely charged di-muon pair
	- \blacktriangleright $\mu^+\mu^-$ common vertex fit $\chi^2/N_{D.o.F} < 20$
	- \blacktriangleright $p_{\mathcal{T}}(\mu^+\mu^-) > 12$ GeV
	- ► Rapidity $|y(\mu^+\mu^-)| < 2.0$
	- I Both muons associated to

 $\rho_T(\mu^+\mu^-) > 12$ GeV

Rapidity $|y(\mu^+\mu^-)| < 2.0$ $\qquad \Upsilon \to \mu^+\mu^-$ invariant mass selection

Both muons associated to $\qquad \qquad \blacktriangleright$ A - $\Upsilon(1S)$: $9.25 < m(\mu^+\mu^-) < 9.65$ GeV

same primary pp interaction $\Upsilon \rightarrow \mu^+\mu^-$ invariant mass selection \blacktriangleright A - Υ(1S): 9.25 < m($\mu^+\mu^-$) < 9.65 GeV ► B - $\Upsilon(2S)$: 9.80 $< m(\mu^+\mu^-) < 10.10$ GeV A. Chisholm Studying the x_b [states with ATLAS 16 / 45](#page-0-0)

Unconverted Photon Analysis

An event containing a candidate $X_b \to \Upsilon \gamma$ decay in which the photon is unconverted

Unconverted Photon Selection

EM calorimeter energy deposits not matched to any track are considered as unconverted photon candidates:

- $E_T(\gamma) > 2.5$ GeV
- $|\eta(\gamma)| < 2.37$ (Barrel-Endcap transition region 1.37 $< |\eta| < 1.52$ excluded)
- \blacktriangleright "Loose"[†] photon ID selection: Including limits on hadronic leakage and requirements on the EM shower shape (designed to reject backgrounds from narrow jets and π^0 decays)

Unconverted Photon Pointing Correction

- \blacktriangleright The polar angle of the photon 3-vector is corrected to point back to $\mu^+\mu^-$ vertex
- **Loose cut of** $\chi^2/N_{D.o.F} < 200$ **rejects photons not** compatible with having originated from the $\mu^+\mu^$ vertex

 $\chi_b \to \Upsilon(1S) \gamma$ Selection

► Reconstructed $\Upsilon(1S) \to \mu^+ \mu^-$ candidates are associated with corrected unconverted photons to form x_b candidates

† Described in detail in: Phys. Rev. D 83, 052005 (2011) (arXiv:1012.4389)

Unconverted Photon Result I

The resulting $m\left(\mu^+\mu^-\gamma\right)-m\left(\mu^+\mu^-\right)+m_{\Upsilon(1S)}^{PDG}$ distribution exhibits three peaks:

- ► Final selection of $p_T(\mu^+\mu^-)>$ 20 GeV chosen to maximise $\chi_b(1P)$ and $\chi_b(2P)$ significance irrespective of effect on the third peak
- Statistical significance of third signal is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)

An extended unbinned maximum likelihood fit is performed to the $m\left(\mu^+\mu^-\gamma\right)-m\left(\mu^+\mu^-\right)+m_{\Upsilon(1S)}^{PDG}$ distribution to extract an estimate of the $\chi_b(3P)$ mass barycentre:

Fit Model

- **Signal:** Single Gaussian for each $\chi_b(n)$ peak, each with a free mean value and width
- ▶ Background: Described by exp $(A \cdot (\Delta M) + B \cdot (\Delta M)^{-2})$ where A and B are free parameters

Assigned Systematic Uncertainties

- \triangleright Unconverted photon energy scale uncertainty (estimated at $\pm 2\%$ of the ∆M position)
- \blacktriangleright Modelling of the background distribution (estimated from refitting with various alternative models)

The statistical significance of third signal remains greater than 6σ with each systematic variation

Left: $m\left(\mu^+\mu^-\gamma\right)-m\left(\mu^+\mu^-\right)+m_{\Upsilon(1S)}^{PDG}$ distribution without a lower $p_{\mathcal{T}}(\mu^+\mu^-)>8$ GeV cut.

Right: Unconverted photon $p_T(\gamma)s$ distribution for $\Upsilon(1S)\gamma$ candidates.

Converted Photon Analysis

An event containing a candidate $\chi_b^{}\to\Upsilon\gamma$ decay in which the photon has converted $(\gamma\to e^+e^-)$

A. Chisholm Studying the x_b [states with ATLAS 22 / 45](#page-0-0)

Converted Photon Selection I

Reconstructing photons from e^+e^- conversions in the Inner Detector (ID) offers improved resolution and access to softer photons:

- \blacktriangleright Reconstructed from ID measurements alone (no EM cluster matching)
- Minimum track momentum $\rho_{\mathcal{T}}({e^{\pm}})>$ 500 MeV
- $p_{\tau}(\gamma) > 1$ GeV
- \blacktriangleright $|\eta(\gamma)| < 2.3$
- \triangleright Only two-track conversions are retained
- \blacktriangleright 4 silicon detector hits required for each electron track

- \triangleright Candidate electron tracks must not already be selected as di-muon candidate tracks
- Radius of conversion vertex $R > 40$ mm to reduce background contamination

Converted Photon Selection II

The 3D impact parameter of the converted photon with respect to the di-muon vertex, a_0 , is a powerful variable which can be used to select photons associated with the di-muon vertex:

 $a_0 < 2$ mm is required to reject photon combinatorics not compatible with having originated from the di-muon vertex

 \blacktriangleright The χ^2 probability of the conversion vertex fit is required to be greater than 0.01

Both the $\chi_b \to \Upsilon(15)\gamma$ and $\chi_b \to \Upsilon(25)\gamma$ distributions are shown together:

- Statistical significance of the third signal (around 10.5 GeV) is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)
- Data points are not corrected for energy losses due to Bremsstrahlung (taken into account in fit)

Under the interpretation of the third signal as $\chi_b(3P)$, the experimental mass barycentre is measured from a simultaneous unbinned extended maximum likelihood fit to both the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ mass distributions:

 \blacktriangleright The simultaneous fit allows a number of parameters to be shared across the two samples to help constrain the model, with additional constraints applied from the known masses (PDG)

Fit Model:

- As the $J = 0$ branching fraction is significantly smaller than for $J = 1, 2$ its contribution can be neglected
- **Figure 1** The $\chi_b(n)$ state is therefore modelled by two Crystal Ball (CB) functions to describe the low-mass Bremsstrahlung tail
- For $n = 1, 2$, the masses of the individual $J=1,2$ states are fixed to the known PDG values, and for $n=3$ the hyperfine splitting is fixed to the theoretically predicted value of 12 MeV
- \blacktriangleright The relative normalisations of the J=1 and J=2 components are fixed to be equal
- A free parameter λ , common to all the peaks, accounts for additional energy losses and appears in the form $\overline{\Delta m} \cdot \lambda$
- **Fi** The background is modelled by $(\Delta m q_0)^{\alpha} \cdot \exp\{(\Delta m q_0) \cdot \beta\}$

- For demonstration, $\sigma = 20$ MeV (i.e. 1P $J = 1, 2$ splitting)
- No knowledge of $\sigma \cdot \mathcal{B}$ for any of the states
- Relative normalisation of χ_{b1} and χ_{b2} components is fixed to be equal

Converted Photon Result II

Assigned Systematic Uncertainties:

- In Vary relative $J = 1, 2$ signal normalisation by ± 0.25 (or left free in fit): ± 5 MeV
- Alternative signal and background models: ± 5 MeV
- Decoupled fits to the $\Upsilon(1S)$ and $\Upsilon(2S)$ distributions: ± 5 MeV
- Individually releasing constraints to the PDG values for the $\chi_b(1P)$ and $\chi_b(2P)$ $masses: +3$ MeV

Fit Result:

- **Energy scale factor** $\lambda = 0.961 \pm 0.003$
- Experimental mass barycentre for $X_b(3P)$ signal determined by fit to converted photon candidates alone is:

$$
\overline{m}_3 = 10.530 \pm 0.005~\mathrm{(stat.)} \pm 0.009~\mathrm{(syst.)}~\mathrm{GeV}
$$

Fit result is not very sensitive to $J = 1, 2$ normalisation as $\sigma \sim \Delta M_{12}$

- Bye eye, difficult to notice any difference in the shape of the composite PDF!
- Reflected in small systematic shift in measured mass (\pm 5 MeV)

Relative Acceptance

Large difference in acceptance between the three states due to minimum $p_T(\gamma)$ reconstruction threshold:

- \triangleright Converted photons have much larger acceptance for all decays at low $p_T(Υ)$
- \blacktriangleright Unconverted photons have a much reduced acceptance due to the $p_T(\gamma) > 2.5$ GeV reconstruction threshold

A. Chisholm Studying the x_b [states with ATLAS 30 / 45](#page-0-0)

Summary

- **IF** The known $X_b(1, 2P)$ states are observed in radiative decays to $\Upsilon(15)\gamma$
- \triangleright A new structure at a higher mass is also observed in the $\Upsilon(1S)$ γ and $\Upsilon(2S)$ γ spectra
- \blacktriangleright The interpretation of this as the $\chi_b(3P)$ states is consistent with theoretical predictions
- \blacktriangleright The mass of the structure is measured with two separate analyses using converted and unconverted photons with compatible results
- The mass measurement with smaller systematic uncertainties from the converted photon analysis is chosen to The known $\chi_b(1, 2P)$ states are

observed in radiative decays to
 $\Upsilon(1S)\gamma$
 A new structure at a higher mass is

also observed in the $\Upsilon(1S)\gamma$ and
 $\Upsilon(2S)\gamma$ spectra

The interpretation of this as the
 $\chi_b(3P)$

Observed bottomonium radiative decays in ATLAS, $L = 4.4$ fb¹

A. Chisholm Studying the x_b [states with ATLAS 31 / 45](#page-0-0)

Confirmation by DØ

Shortly after the publication of the ATLAS result, the $D\emptyset$ collaboration confirmed the observation of a new structure in the $\Upsilon(1S)$ mass spectrum:

Observation of a narrow state decaying into $\Upsilon(1S) + \gamma$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Phys. Rev. D 86, 031103(R) (2012) (arXiv:1203.6034 [hep-ex])

A. Chisholm Studying the x_b [states with ATLAS 32 / 45](#page-0-0)

Confirmation by DØ

Confirmation by LHCb

LHCb later confirmed the observation at ICHEP2012 in a preliminary conference note:

Observation of the $\chi_b(3P)$ state at LHCb in pp collisions at $\sqrt{s} = 7$ TeV LHCb-CONF-2012-020

"Three peaks are clearly visible, corresponding to the $\chi_b(1P)$, $\chi_b(2P)$, and the new $X_b(3P)$ state recently observed by the ATLAS experiment and confirmed by DØ."

 $\overline{m}_3 = 10.535 \pm 0.010$ (stat.) GeV

A. Chisholm Studying the x_b [states with ATLAS 34 / 45](#page-0-0)

 \dagger Nothing to do with the PDG, ATLAS, DØ or LHCb!

Some Renewed Theoretical Interest

Summary of theoretical work prompted by the observation of the $\chi_b(3P)$ candidate:

- **Potential model results for the newly discovered** $\chi_b(3P)$ states
- \blacktriangleright arXiv:1201.4096
- Production of X_b mesons at LHC
- \blacktriangleright arXiv: 1203.4893
- **Comment on "Observation of a New** X_b **State in Radiative Transitions to** $\Upsilon(15)$ and $\Upsilon(25)$ at ATLAS"
- \blacktriangleright arXiv: 1204.1984
- Developments in heavy quarkonium spectroscopy
- \blacktriangleright arXiv: 1205.4189
- $\triangleright \chi_b(3P)$ splitting predictions in potential models
- \blacktriangleright arXiv: 1208.2186

Perhaps the most important implication:

- Another source of feed down into the inclusive $\Upsilon(nS)$ cross section
- \triangleright The inclusive $\Upsilon(3S)$ cross section was previously thought to be free from significant feed down, $\mathcal{B}(\chi_b(3P) \to \Upsilon(3S)\gamma)$ expected to be large

You may need to squint!

- Investigate with a crude model and purely qualitative analysis!
- Relative normalisation of $J = 0, 1, 2$ taken from PDG branching fractions (assume equal production ratio and assume $2P$ values for $3P$)
- Relative production of $n = 1, 2, 3$ taken from recent ATLAS Υ production paper
- No acceptance effects, resolution modelled by CB with various different Gaussian widths σ

 \triangleright Mass resolution of around 5 MeV very challenging at the LHC (for ATLAS at least!)

What next?

Important to look in other channels!

The (non-)observation of the new state in other decays could shed more light on its nature and confirm / rule out the $\chi_b(3P)$ interpretation. Some channels that might be possible at the LHC include:

- $\blacktriangleright \chi_b \rightarrow \Upsilon + \omega$
- $\blacktriangleright \chi_b \to \Upsilon + \Phi$
- $\blacktriangleright \chi_b \rightarrow J/\psi J/\psi$
- \triangleright Other VV final states?

Cross section (1, 2P) and 3P $\sigma \cdot \mathcal{B}(\chi_b(3P) \to \Upsilon(1S)\gamma)$ measurements

 \blacktriangleright Possible with 2012 dataset

Spin, Parity and Polarization measurements

- \blacktriangleright Likely to require more data, complex analyses...
- \triangleright Polarization is accessible through an angular analysis of final state di-muons in $X_b \to \Upsilon(nS)$ γ (arXiv:1103.4882)

 $\chi_b \to \Upsilon(15) \omega$

CLEO has observed $\chi_b(2P) \to \Upsilon(1S) \omega$ decays (Phys. Rev. Lett. 92, 222002 (2004))

 \triangleright Only $\chi_{b1}(2P)$ and $\chi_{b2}(2P)$ are above the $\Upsilon(1S)$ ω threshold

$$
\blacktriangleright \ \mathcal{B}(\chi_b(2P) \to \Upsilon(1S) \, \omega) = 1 - 2\%\perp \sqrt{}
$$

 ω momentum in χ_b rest frame only 135(94) MeV! χ

Bottom Line - Low acceptance with ATLAS, huge backgrounds! Possible with LHCb?

$\chi_b \rightarrow \Upsilon(15) \phi(1020)$

The new state at 10.53 GeV is above the $\Upsilon(1S) \phi(1020)$ threshold...

- \blacktriangleright Not yet observed...
- \triangleright $\mathcal{B}(\chi_b(3P) \to \Upsilon(1S) \phi)$ not measured or calculated! (as far as I am aware) χ
- ► High acceptance with $\phi \to K^+K^-$ (${\cal B}(\phi \to K^+K^-)$ is also large \sim 50%) \checkmark
- \triangleright $\Upsilon(1S) + 2$ tracks with ATLAS's limited PID might be messy! X

Bottom Line - β may be very low! LHCb (with good PID) more sensitive?

$$
\chi_b \to J/\psi \, J/\psi
$$

$X_b \rightarrow J/\psi J/\psi$: a potentially a very clean signal at the LHC

- ▶ 4 Lepton (4 μ more realistic at low p_T) very clean, low background \sqrt
- $\triangleright \ \chi_{b1} \rightarrow J/\psi J/\psi$ is Landau-Yang forbidden, $\Delta m_{0.2} \approx 53$ MeV large enough to be resolved? \checkmark
- ► $\mathcal{B}(\chi_{b0}\to J/\psi \,J/\psi) \approx 2\times 10^{-4}$ (Phys. Rev. **D72** (2005) 094018) ∦

$$
\blacktriangleright \ \mathcal{B}(J/\psi\to\mu^+\mu^-)^2\approx 3.6\times 10^{-3}\ \text{X}
$$

The inclusive cross section for χ_{b0} at the LHC is estimated to be as much as $\sigma(pp \to \chi_{b0} + X) \approx 1 \mu b$:

- ▶ Rough estimate of 700 events per fb $^{-1}$ (before trigger, acceptance and reconstruction)
- ▶ Strong potential for observation with $>$ 20fb $^{-1}$ from 2011 + 2012 (ATLAS / CMS)

 $\chi_h \rightarrow J/\psi \, J/\psi$

Estimates suggest a large raw event yield, but how many χ_b are likely to be reconstructed?

Require $p_T(\mu) > 6$ GeV for triggered J/ψ and $p_T(\mu) > 4$ GeV for the other with all muons required to be within $|\eta(\mu)| < 2.5$

- Acceptance and trigger thresholds allow only very boosted ($p_T > 20 \text{GeV}$) χ_b to be reconstructed
- **►** This will significantly (factor of \sim 100) reduce the yields on the previous slide!

Bottom Line - Likely to need $10s$ fb $^{-1}$ data for an observation, possible in 2012?

Conclusion

- \blacktriangleright The known $\chi_b(1, 2P)$ states are observed in radiative decays to $\Upsilon(1S)$ γ at ATLAS
- **A new structure** at a higher mass is also observed in the $\Upsilon(15)$ γ and $\Upsilon(2S)$ γ spectra
- **Fig.** The interpretation of this as the $\chi_b(3P)$ states is consistent with theoretical predictions
- \triangleright Many more interesting opportunities at the LHC!

Thank you for listening!

χ_c at the LHC

