

Shining Light on Neutrino Interactions

Andrzej Szelc (University of Manchester)

A short history of Neutrinos

Dear Professor Pauli,

We are happy to inform you that we have definitely detected neutrinos.

June 14, 1956

Fred Reines

- The neutrino was proposed in 1930 by W. Pauli to save energy conservation in β -decays.
- It was discovered by Reines and Cowan in 1956 (despite Pauli's fear of it interacting too weakly to be discovered).
- Neutrinos from extra-terrestial sources were discovered: the Sun and cosmic rays.
- Very quickly it was discovered that **R. Davis Jr** there are fewer neutrinos than **constructing his** expected. **reasuring the periment in the** $9.5^{+1.2}_{-1.4}$ **Omestake mine** \bullet This has now been confirmed to be a a result of v -oscillations. Data $*2.55 \pm 0.25$ Predicte $p-p$, pep Experiment ⁷Be Super-Theory **L** *Super-Kamiokande Collaboration* ΒB **CNO** Kamiokande*Phys. Rev. Lett. 81, 1562–1567 (1998)* $10/05/17$ Phys. Rev. Lett. 61, 1962–1987 Hydr α Birmingham HL α Seminar 2

C. Cowan

F. Reines

MANCHESTER Measuring Neutrino Oscillations $\mathbf{V}_{\mathbf{I}}$ l

- In oscillation physics we usually start with one type of neutrino and measure how it changes into another.
- We can do this by detecting the new neutrinos (appearance) or registering the loss of original (disappearance).

distance |

- We know three neutrino flavors: v_e , v_μ and v_τ . We tell them apart by the effect of their "Charged Current" interactions.
- By changing the energy of neutrinos and the distance of observation we can address surprisingly different questions.

Nucleon

 W^{\pm}

The Current State of Knowledge

The neutrino model

The
of M

Our picture of Neutrinos in the standard model is almost complete.

"Large" mixing angle θ_{13} opens the way to measurements that could explain the **matter – antimatter asymmetry** in the Universe

"Unknown" physics

- **Short baseline** measurements hint at oscillations **incompatible with 3 neutrino model**.
- Tantalizing anomalies that could be interpreted as a new neutrino state – **the sterile neutrino.** At tension with results from MINOS+, DayaBay and IceCube.

Detecting neutrinos in a LArTPC

- ersi
- **Neutrino** measurements are difficult.
- Due to the photon backgrounds v_e appearance is particularly challenging.
- The LArTPC and its bubble chamber-like data gives us strong background rejection tools.

LArTPC Operation

 $\label{eq:maxc} \begin{array}{c} \mbox{MANCHESTER} \\ \mbox{1824} \end{array}$

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 7

US based LArTPC Program

The University

Yale TPC

Location: Yale University Location: Fermilab Active volume: 0.002 ton Active volume: 0.02 ton operational: 2007

Bo

operational 2008

Location: Fermilab Active volume: 0.3 ton operational: 2008 First neutrinos: June 2009

MrIA

Location: Fermilab **Location Fermilab** Active volume: 0.1 kton Active volume: 0.1 + 0.6 kton Operational: 2015 Construction start: 2017

LBNE

Location: Homestake Active volume: 35 kton Construction start 202?

Location: Fermilab Operational: since 2008

Location:Fermilab Purpose: materials test st Purpose: LAr purity demos Operational: 2011

Location:Fermilab Purpose:LArTPC calibration Manufacturer (phase 3)

inamammum^{nn</sub>}

Location: LANL Purpose: LArTPC calibration Purpose: purity demo Operational: 2014

Location: Fermilab Operational: 2013

Two Years ago, this was a reasonably accurate slide...

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 8

LArTPC development

Development and prototyping through the Fermilab SBN and CERN neutrino platform programmes

40 kT of liquid argon at SURF (South Dakota)

A huge effort going on now to design and build.

Starting with protoDUNE prototype at CERN.

DUNE

- LArTPCs seem to do a good job using ionization charge.
- Why do we care about scintillation light?

MANCHESTER

Scintillation Light

- Liquid argon is a prolific scintillator.
- The light is always there, complementary to the charge.
- This is the most active field of development in LArTPCs.

Scintillation Light in Argon (2)

Transport:

Liquid argon is mostly transparent to its own scintillation.

At longer distances effects like:

- Rayleigh scattering \sim 55cm f(λ)
- absorption, e.g. on nitrogen \sim 30 m @2ppm N2 begin to play a role.

Note high refractive index ~1.5 and gradient of for VUV → relatively slow light.

The University
of Manchester

Scintillation Light in Argon (3)

Detection:

Liquid argon is almost the **only** thing transparent to its scintillation.

Detection is challenging – most often need to use Wavelength shifting compounds, like TPB.

Can deposit WLS on Light detection components or inside the detector.

> VUV sensitive SiPMs prototypes have appeared very recently.

The Universi
of Manchest

MANCHESTER Scintillation Light in LArTPCs: trigger

- A scintillation burst during the beam gate gives an indication that a neutrino signal happened.
- Provides a " t_0 " necessary to calculate x-position.
- Needed to apply corrections for loss of charge.

Scintillation Light in LArTPCs: cosmic background removal

- LArTPCs on the surface see several cosmic rays in one readout frame.
- Need to match flashes to a charge deposition in the chamber.
- Allows rejecting backgrounds from cosmics and assign " t_0 " to each event.

Scintillation Light in LArTPCs: timing

- LArTPCs are relatively slow detectors (1 frame is ν 1ms).
- Improving timing resolution opens new physics possibilities:
	- **Few 100ns:** Tag Michel electron decays through timing
	- **1-2 ns:** resolve beam bucket structure
	- ? ns: beam exotics heavier than neutrinos.

Scintillation Light in LArTPCs: energy resolution

- Quantity of scintillation light is complementary to charge.
- Registering both will improve energy resolution.
- Knowing position will maximise precision.
- Largest benefits at lower 10^{-2} energies, where TPC not as sensitive: Supernova neutrinos, nuclear effects³ 10^{-5} missing hadronic energy 10^{-6}

 10^{-}

PMTs vs SIPMs

900

PMTs

Proven detector technology in liquid argon.

- Excellent timing resolution \sim ns.
- e.g. Hamamatsu R5912 8" PMTs
- Small channel/active area ratio.
- Non-negligible size, relatively high voltage.

SiPMs

- SiPMs: Relatively new on the block.
- **Excellent** performance in liquid argon. Small voltage needed to operate.
- Small active size need to be clever to avoid large channel number.

30.5 V

SiPMs + coated bars

- WLS coated bars coupled to SiPMs (current DUNE baseline design).
- SiPM timing not as good as PMTs (Industry is working on this).
- Photon travel time in bar adds to this.
- Work ongoing to minimize attenuation in bars.
- \bullet Tested in 35ton $$ prototype and teststands.

The ARAPUCA light trap

- The Univers
of Manches
- A way to enlarge the active surface without increasing number of channels.
- Use dichroic filters + 2 WLS

From Theory to "Practice"

 $\begin{matrix} \text{MANCHESTER} \\ \text{1824} \end{matrix}$

SBN Physics

The Universi
of Manchest

- **Recalculation of reactor** neutrino fluxes and analysis of sources in gallium experiments.
- MiniBooNE confirms its excess with the final data set.

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

Phys. Rev. Lett. 110, 161801 (2013)

- Very different experimental techniques are hinting at short baseline oscillations.
- Tension with other experiments, e.g. longbaseline.

SBN Program at Fermilab

SBN Program at Fermilab

Light Detection in SBND

R&D is an important part of the mission of SBND.

- Scintillation light is one of the most important aspects of rescated reflector foil this R&D.
- Plan to implement a multi-technology setup .

SBND Light Detection Systems

• 60 8" 14 dynode Ham PMTs/TPC.

DUNE-like light guide bars (secondary) SiPMs coupled to WLS covered light guide bars

- WLS covered reflector foils.
- Increase uniformity of light collection.
- R&D for future experiments.

- Argon is a prolific scintillator, so at beam neutrino energies simulating each optical photon is not feasible.
- We use an optical lookup library (developed by uBooNE) to mitigate this problem.

$$
\langle N \rangle_{\text{PMT-HS}} = \left(\frac{dE}{dx_{\text{step}}} \cdot \text{Length}_{\text{step}} \right) \cdot LY \cdot \text{visibility}_{\text{step}}^{\text{PMT}}
$$

Next slides, largely work by D. Garcia-Gamez, Manchester

The Universit
of Mancheste

MANCHESTER **Considered configurations**

array of PMTs in the simulations We use the symmetry of the system. Overshoot number of PMTs (11 x 14 PMTs / TPC 8'' diameter) to be able to switch them On/Off

> Note: from now on, **visible** refers To light wavelength-shifted and reflected off of the foils, while **VUV** refers to light directly hitting the PMTs.

MANCHESTER

Light Yield Uniformity

Light Yields

Average number of photons/event/MeV (adding the signal in all the PMTs) vs X position (drift distance to the photocathode plane)

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 34

Timing

-
- To see if \neg ns resolutions can be achieved need to account for second order effects, e.g. Rayleigh scattering.
- impossible to do using a lookup library (memory) -> *parametrization of arrival times.*
- Assume we can model Argon Scintillation timing (in principle optimistic).

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 36

MANCHESTER Works for Visible Light too:

Single PMT time resolution

Energy = 25 MeV, ph-cathode-coverage = 6 %

Timing

Timing resolution depends on the quantity of arriving light (smaller chance of missing photons coming in)

35

Scintillation: $0.3 \times \tau_{\text{fast}}(6 \text{ ns}) + 0.7 \times \tau_{\text{slow}}(1590 \text{ ns})$

Propagation: Direct transportation + Rayleight Scattering

Fast component life τ_{fast} [ns] 70 MC - Preliminary time changes as a 60 function of distance. Ŏ Ō 50 40 O \circ 30 Will affect triggers \circ focusing on the 20 \bullet \circ fast component 10 0 20 60 80 120 140 160 180 40 100 Ω $10/05/17$ \times [CM] 0

Position Resolution

-
- The high density of PMTs in SBND allows reasonable position reconstruction with light only.
- It cannot be as good as the charge information, but it is fast. And it allows tagging events.

Y-Z Positional Resolution

MANCHESTER

"Tracking" the events with light: "cosmics"

Very simple assumption \rightarrow Big room for improvements! 10/05/17 A. M. Szent and the seminar 42 A. M. Szent and the seminar 42 A. M. Szent and the seminar 42 A. M. Sz
HEP Seminar 42 A. M. Szent and the seminar 42 A. M. Szent and the seminar 42 A. M. Szent and the seminar 42 A.

D. Garcia-Gamez

X-drift position resolution

- If able to differentiate VUV from Visible (reemitted) possible to get position in x on the fly.
- Additional information, crucial for disentangling multiple events in the same frame.
- Could decide to readout just parts of detector.

$MANCHESTER$ ³⁹Ar – how big of a problem is it really?

- 39Ar is a beta- emitter with an end point at 565 keV. an end point at 565 keV.
average energy of electron \sim 236 keV
- Measured rate is 1Bq/kg.
- Could it

versity

The University

What simulations can tell us

- The Univ
of Manc
- Simulations show that a High LY light detection system can help determine timing, calorimetry and position resolution.
- Adding WLS-covered reflector foils improves the overall performance of the system.

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 45

The University
of Mancheste

From "Practice" to Reality

Or: **Back From the Future**

MANCHESTER Fermilab Testbeam Facility

LArIAT Beamline

INDITIBITION (UBV/C)

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 48

MANCHESTER Time Projection Chamber

rersi

Using the same simulation tools as SBND

In fact, the tools were developed for LArIAT first, and adapted for SBND.

Excellent uniformity in the detector.

Two full runs completed (Not all PMTs were always on).

Data analysis in progress.

Validating the Simulation

- Simplest topology – easy to understand.
- Great to test predictions vs reality.
- Data agrees with MC predictions (in progress).

The University

The University
of Mancheste

Michel Electrons

 $\mu^{+/-}$ (at rest) $\rightarrow e^{+/-} + \nu_{\mu}$

- Well known energy spectrum.
- Great to perform calibrations.
- Need scintillation light to trigger.

Tek .
W. Foreman Paraman and Alexander and Alexander and Alexander and Alexander and Alexander and Alexander and Ale Initial μ Decay e^{+/-} Coincidence gate Michel trigger u Wisk $\left[9.9, 6 \right]$

Wire Number

Real-time triggering on Michel e's from stopping cosmic μ's using **light signals**

W. Foreman

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 53

Energy Calibration with Michels

- Michel-candidate signals integrated to get PE spectrum
- Data in approximate agreement with preliminary MC
	- Gives confidence in MCpredicted LY: 2.4 pe/MeV for 2" ETL PMT (Run I)

End goal: combine charge + light to get full energy reconstruction.

W. Foreman

2 (Suzuki & Measday, 1987)

Physics with Michels

W. Foreman

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 55

MANCHESTER

- LArIAT analyses on using light and combined light + charge for calorimetry, particle ID are finishing.
- The infrastructure needed to manufacture the reflective foils for SBND is practically ready.
- Beginning to apply the simulation tools to understand effects on DUNE physics (low energy events, SN neutrinos)

Test run with mesh cathode

Prototype of SBND mesh cathode manufactured in Manchester was installed in LArIAT beginning of march. Will run with and without foils (change over in a few weeks).

Fresh off the press!

10/05/17 A. M. Szelc @ Birmingham HEP Seminar 58

Summary

- The Universi
of Manchest
- Scintillation light will be a powerful tool in enhancing the physics goals of liquid argon neutrino detectors, from SBND to DUNE.
- There is still some uncharted territory and room for new ideas and improvements.
- Using existing, or soon to be built detectors, like LArIAT and SBND is a great way to test these new ideas and solutions.
- Stay tuned for results from LArIAT run III and previous data.

Thank You for your Attention

