

Plan of Talk

- The LHC energy regime
- Introduction to the ALICE detector
- Performance examples from 2008
- "First Physics" programme in pp
- Pb-Pb programme
- Summary

AA Collisions

- Study nature of phase transition to Quark-Gluon Plasma (QGP)
- Study properties of QGP
- Study chiral symmetry restoration

pp Collisions

- Reference for AA
- Study specific physics phenomena for which ALICE is well suited

Phases of Strongly Interacting Matter

Lattice QCD, $\mu_B = 0$

Both statistical and lattice QCD predict that nuclear matter will undergo a phase transition at a temperature of, $T \sim 170$ MeV and energy density, $\epsilon \sim 1$ GeV/fm³.

Quark Gluon Plasma (QGP)

ALICE will look at Pb collisions to observe QGP "signatures"

Why Heavy lons at the LHC? ... factor ~30 jump in √s ...

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	500	850	2–8 x10 ³
ε (GeV/fm³)	2.5	4–5	15–40
V _f (fm³)	10 ³	7x10 ³	2x10 ⁴
τ _{QGP} (fm/c)	<1	1.5–4.0	4–10
τ ₀ (fm/c)	~1	~0.5	<0.2

J. Schukraft QM2001: "hotter - bigger -longer lived "

$$\begin{split} \epsilon_{LHC} &> \epsilon_{RHIC} > \epsilon_{SPS} \\ V_{f LHC} &> V_{f RHIC} > V_{f SPS} \\ \tau_{LHC} &> \tau_{RHIC} > \tau_{SPS} \end{split}$$

Novel aspects at ALICE Qualitatively new regime

New regime accessible at LHC

 As low x (~Q²/s) values are reached, both the parton density and the parton transverse sizes increase, there must be a regime (at q² <Q_s²) where partons overlap. When this happens, the increase in the number of small x partons becomes limited by gluon fusion.

What is new at LHC is that this overlap should occur for relatively high p_T partons ~ 1 GeV/c (Kharzeev $Q_s^2 \sim 0.7$ GeV²), where the effect must be visible

New low-x regime

From RHIC to LHC

x_{min} ↘ ~ 10⁻²

- factor 1/30 due to energy
- factor 1/3 larger rapidity

With J/ψ at rapidity 4

- Pb-Pb collisions $x_{min} \sim 10^{-5}$ - pp collisions $x_{min} \sim 3 \times 10^{-6}$

Energy density

LHC as Ion Collider

• Running conditions for 'typical' Alice year:

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	<l>/L₀ (%)</l>	Run time (s/year)	σ _{inel} (b)
рр	14.0	10 ^{31*}		10 ⁷	0.07
PbPb	5.5	10 ²⁷	70-50	10 ^{6 * *}	7.7

- + other collision systems: pA, lighter ions (Sn, Kr, Ar, O)
- & energies (pp @ 5.5 TeV)
- * L_{max} (ALICE) = 10³¹ cm⁻²s⁻¹ ** $\int L dt$ (ALICE) ~ 0.7 nb⁻¹/year

ALICE Collaboration

۲

ALICE R&D

1990-1998:Strong, well organized, well funded R&D activity

Installing rails (2003)

alter.

0

Dimuon Magnet Yoke (2002)

Winter in Russia

WENN DELA TATIE

GEELA 计A FEALE

CIEREA S.E. 10.005 NAMELTORIDA 64.145 State Reads CT CARLING READS 101 PERSON SPIRA

Paralle 54

目(1992 中制地田

DEPA /A PRIMA DEPA MARKAN

Rolling in

French coils

đ

Yoke Assembly completed 19 Feb 2004

A last look at the TPC field cage ...

Position Monitor

TPC Installation (January 2007)

< 100 m horizontal, < 100 m vertical in 2 days <v> = 4 m/hour

ITS Installation 15.3.07

27

The state of the s

P.L.

-

1

Formal end of ALICE installation: July 2008

ALICE Acceptance

- <u>central barrel</u> -0.9 < η < 0.9
 - -2π tracking, PID
 - single arm **RICH** (HMPID)
 - single arm em. calo (PHOS)
 - jet calorimeter (proposed)
- forward muon arm $2.4 < \eta < 4$
 - absorber, 3 Tm dipole
 magnet
 10 tracking + 4 trigger
 chambers
- <u>multiplicity</u> -5.4 < η < 3
 - including photon counting in
 PMD
- trigger & timing dets
 - **T0:** ring of quartz window
 PMT's
 - V0: ring of scint. Paddles

Particle Identification in ALICE

- 'stable' hadrons (π, K, p): 100 MeV/c
 dE/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (RICH)
- decay topologies (K⁰, K⁺, K⁻, Λ, D)
 - K and L decays beyond 10 GeV/c
- leptons (e, μ), photons, π^0
 - electrons TRD: p > 1 GeV/c, muons: p > 5 GeV/c, π^0 in PHOS: 1 < p < 80 GeV/c
 - excellent particle ID up to \sim 50 to 60 GeV/c

Inner Tracking System ITS

- Three different Silicon detector technologies; two layers each
 - Pixels (SPD), Drift (SDD), Strips (SSD)

Detector	Acceptance (η, ϕ)	Position (m)	Dimension (m ²)	N. of channels
ITS				
SPD	$\pm 2, \pm 1.4$	0.039, 0.076	0.21	9.8 M
SDD	± 0.9	0.150, 0.239	0.42, 0.89	133 000
SSD	$\pm 0.97, \pm 0.97$	0.38, 0.43	5.0	2.6 M

Status: installed; being commissioned

- Δ(rφ) resolution: 12 (SPD), 38 (SDD), 20 (SSD) μm
- Total material traversed at perpendicular incidence: 7 % X₀

Inner Silicon Tracker

1st muon in SPD: Feb 17, 2008

First TPC Tracks

Momentum resolution

40

TPC Calibration QM09: (J.Wiechula)

- TPC running continuously May-October 2008.
- 60 M events (Cosmic, krypton, laser) recorded.
- Initial calibration, ExB and alignment transverse momentum resolution, B=0.5 ⁺

TOF cosmic rays results

(QM09 P. Antonioli)

- Detector fully installed
- Noise rate : 1.6 Hz/ch (< expectations)
- Trigger capability fully operational
- Commissioning underway
- Calibrations with cosmics very promising despite low statistics

ALICE Central Trigger Processor

ALICE CTP features:

- 3 Levels (L0,L1,L2 ~ 1μs, 6μ, 88μs)
- Partitioning of detectors into independent groups e.g. muon arm and central barrel
- Pile up (past-future) protection tens of interactions in TPC drift time

• Birmingham responsibility:

- hardware
- software
- operation

- 1st physics analysis: trigger correction, high multiplicity,...

	♥♥≜	X CTP counters	5				$\odot \oplus \Box$			XUL	
ctp	byin4	28052			-ft.			fo1	RND1	-214533	8310
Stdfuncs	byin_end4	0	IQQ	er S	OILW	<i>lare</i>	CalFlag		RND2	0	
	byin_last4	U					HMPID	:1 0	BC1	200	
Classes	byin3	2805210	byin23	2805210	byin14	2805210	DAQ:	14	BC2	1000	
FOs/Clusters	byin2	2805210	byin24	2805210	byin13	2805210	Itu3:	0	INTfun1	0×0	
Shared resources	byin1	2805210	byin9	2805210	byin12	2805210		0	INTfun2	0x0	
Counters	byin5	2805210	byin19	2805210	byin11	2805210	Itu4:	Ju	INTfunT L0fun1	0×0 0×0	
	byin6 by in7	2805210	byin18 byin17	2805210	byin10	2805210	FOs	> BUSY	L0fun2	0x0	
Test class	byin7	2805210 2805210	byin17 byin10	2805210			т		INT1: BC1	1000	
Scope Signals	byin8	(byin16	(INT2: BC2		
SSMbrowser	ReadInc	rements Perio	odic read	Clear counte	ers Add/Rei	move counter			All/Rare:		
SSMcontrol	•••	X ctp:)				2		BCM1	bitmap	 D
DebugSSMcalls	cmd				start kill	quit Log:	3		BCM2	bitmap	
TooBUSY	<pre>getswSSM(3) <0x8></pre>						_4		ВСМЗ	bitmap	
File	<pre>getswSSM(4) <0x0></pre>						5				
INT	getswSSM(5) <0x0>						6		BCM4	bitmap)
busy	getswSSM(11)								PF1 None		
SimpleTests	<pre><0x0> getswSSM(12) <0x0></pre>								PF-L0	PF-L1	PF-L2
inputsTools		en counters name	es to file	:/home/alice/	/zlm/v/vme/WO)RK/default.		10 100	Sec. C		
quit											2
🕲 🕁 🖻 🔍 cm	P classes)									×
Show all classes											
CI#_L0 inputsL0 vetos selL0 pre-scaler _L1 inputsL1 vetos L2 in									<u>.</u>	L2 veto	
1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				0 0 0 0							
							1000		firefox	0	
^* 🖗 😣 📴 📴	2 3 4	🖉 zlm@altri1:~	- Shell - 🗎	🕻 VME crate	X To	plevel [6]	- 🥹 🛛	🚊 🍻 💱 🛊	<u>i</u>	09:	32 London

Data Taking & Commissioning 2008

- Comissioning runs (24/7)
 - Cosmics I (2 weeks, Dec 2007)
 - local (individual detectors) and start of global (several detectors) commissioning
 - Cosmics II (3 weeks, Febr/Mar 2008)
 - local/global commissioning, first few days of <u>alignment 'test</u>' run, magnet commissioning
 - Cosmics III (since May 2008 continuous operation 24/7)
 - global commissioning, calibration & alignment production runs

Injection tests

- TI2 dump in June , injection tests August, first circulating beam September
- observed very high particle fluxes during dumps and even during injection through ALICE
 - 10's to 1000's of particles/cm² with beam screens in LHC and/or TI2
 - decided to switch off all sensitive detectors during injection
 - SPD, V0 always on (trigger),
 - SSD, SDD, FMD, T0 occasionally
 - (beam was useful only for a small subset of detectors !)

Run: 60824 Event: 136 Timestamp: 2008-09-25 21:27:59

Cosmic p_T-spectra and charge

C.Bombonati

Extraction tests: 14-15 June

Federico Antinori, SQM2008

- beam extracted from the SPS and dumped in the transfer line
- muons make it all the way to ALICE

First injection in the LHC!

- 8 August 2008
- ALICE SPD (pixel) and V0 (scintillator) switched on during first phase (upstream dump)
 - pilot bunches: ~ 5 10⁹
 protons
- Trigger: ≥ 10 hits on layer 2
- 32 events triggered
 - Run 51403 (16:53 to 18:05)

V0 vs SPD

naturenews

Published online 25 August 2008 | Nature | doi:10.1038/news.2008.1061

News

Double first for Large Hadron Collider

Counter-clockwise beam test produces historic particle collisions.

Matthew Chalmers

Champagne corks popped at the Large Hadron Collider (LHC) this weekend after one of the facility's four giant particle detectors tasted its first authentic data. Crammed into a stuffy control room on the afternoon of Friday 22 August, physicists tracked the debris produced by protons that had struck a block of concrete during a test of the ε_3 billion ($\pounds_{2.1}$ billion) collider's beam-injection system.

Some 15 years in construction, the LHC is based at the European particle facility CERN near Geneva, Switzerland, and is due to fully switch on its proton beams on 10 September. But the LHC's particle detectors have been recording hits from cosmic rays for several months — and Friday's test now marks the first time particle tracks have been reconstructed from a man-made event generated by the collider. "It's amazing to have seen the first LHC tracks," Themis Bowcock of University of Liverpool, UK, who led the team, told *Nature*. "It's quite overwhelming actually."

The first useful physics data is expected to come in October, when the two counter-rotating beams of protons racing through the LHC's 27-kilometre-long tunnels are made to collide, packing sufficient energy into a small enough space to produce fundamental particles from thin air. Full high-energy collisions at a combined energy of 14 trillion electron volts will begin next spring, exceeding the energies accessible to the current world record holder — the Tevatron at Fermilab in Batavia, Illinois — by a factor of seven. The LHC's high-energy collisions will allow physicists to search for new particles such as the fabled Higgs boson, which is thought to be responsible for conferring the property of mass on other particles.

Joy in the LHCb control room as the proton smashing commences.

Matthew Chalmers

Opportunity collides

The purpose of this weekend's injection test was to make sure protons are magnetically kicked out of the smaller Super Proton Synchrotron (SPS) — the last link in a chain of other CERN accelerators that whip protons up to faster speeds — at the precise moment the LHC is ready to accept them. For this transfer process to happen smoothly, magnetic pulses in the accelerator chain must be synchronized to within a fraction of a microsecond.

10 September: circulating beam

beam 1: 1st complete orbit ~

• first signals from ALICE

11 September: RF capture (Physics data!)

- 11 September, ~ 22:35 first capture
 - beam 2 kept in orbit for over 10 minutes!
- series of injections with tens of mins RF capture during night
 - in ALICE: 673 events in total
- → first data for Physics (beam 2 background)

CTP - September 2008

"First 3 minutes"

"First Papers" from previous energies; all required only small event samples (~20K events)

$dN/d\eta$ at $\eta=0$

- Feynman (1969):
 N_{tot} = a+ b*ln(s) dN/dη= const
- ISR(1977): dN/dη=a+b*ln(s)
- SppS (1981): dN/dη=a+b*ln(s)+c*ln(s)²

Model discrimination/tuning

• Pythia and Phojet predictions different => First measurements will be able to distinguish Eur. Phys. J. C 50, 435–466 (2007)

• Colour glass condensate Nucl.Phys.A747:609-629(2005)

Proton-Proton collisions

 Many experiments triggered on and published non-single-diffractive events (NSD)

Trigger Corrections

- Minimum Bias triggers react differently to the diffractive and non-diffractive contributions.
- Effect of varying the relative fractions for these processes has been studied systematic error in measurement (S. Navin, C. Lazzeroni, R. Lietava)
- Differences in the default event generators (PYTHIA, PHOJET) for diffractive processes have been noted and are being investigated (M. Bombara, S. Navin, R. Lietava)
- Relative fractions for different processes can be estimated from trigger ratios (Z.L. Matthews, O. Villalobos Baillie)

Multiplicity correction

• Multiplicity is a measure of the number of charged tracks per event

 Kinematic differences between Pythia and Phojet affect our efficiency of multiplicity measurements

MB1 trigger with Pythia as default

Systematics error = 4%

Varying fractions to view effect of multiplicity change with respect to Pythia's default multiplicities

> **Phojet and Pythia** default fractions

> > S.Navin

Sparsh Navin, IoP Nuclear Physics, 8th April 2009

Kinematic comparison of generators

Extract f_{sd} , f_{dd} from data !

Multiplicity distribution

1972: KNO (statistical) scaling law

 $P_{n}(s) = \frac{1}{\langle n \rangle} \Psi\left(\frac{n}{\langle n \rangle}\right)$ $\Rightarrow \text{shape of distribution is} independent of s$

Initial multiplicity reach

- With 2x10⁴ minimum bias pp events we will have statistics up to multiplicity ~150 – 10 times the average (30 events beyond)
- We plan to use also multiplicity trigger (with silicon pixel detector) – to enrich the high-multiplicity
- Energy density

 in high-multiplicity
 pp events can reach
 that of a heavy-ion collision
 (according to the Bjorken formula),
 however, in much smaller
 volume

Detector Response

- Described by matrix R_{tm}
 - Probability that a collision with the true multiplicity *t* is measured as an event with the multiplicity *m*
 - Created from full detector simulation (if needed: as function of vertex-z)
 - $M_m = R_{tm} T_t$ $\Rightarrow T_t = R_{tm}^{-1} M_m$
 - R_{tm} can (usually) not be inverted (singular, statistic fluctuation)

Two approaches considered: -χ² minimization -Application of Bayes' Method

High-multiplicity trigger

Silicon pixel detector

fired chips

- fast-OR trigger at Level-0 OR signal from each pixel chip
- two layers of pixel detectors 400 chips layer 1; 800 layer 2
- trigger on chip-multiplicity per layer

Sector: 4 (outer) + 2 (inner) staves

Fired chips vs. true multiplicity (in η of layer)

SPD: 10 sectors (1200 chips)

Few trigger thresholds

- tuned with different downscaling factors
- maximum threshold determined by

event rate background double interactions

400 350 300 10 250 200 Cut 150 1 100 50 F 10 0 200 400 600 800 1000

multiplicity in layer

High-multiplicity trigger – example

Example of threshold tuning:

MB and 3 high-mult. triggers

250 kHz collision rate recording rate 100 Hz MB 60%

3 HM triggers: 40%

trigger

rate Hz

60.0

13.3

13.3

13.3

scaling

4167

259

16

1

"Full" distribution from single MC

Created using the probabilities assuming nominal int.
 rate of μ =0.2 interactions / bunch crossing

High Multiplicity pp

- For QGP in collisions, need to exceed the energy density limit
- J. D. Bjorken: multiplicity (number of charged tracks) of an event can be related to the energy density in the collision

$$\epsilon_{Bj} = \frac{dE_{\perp}}{dy} \frac{1}{S_{\perp}\tau} \qquad \qquad \frac{d\langle E_{\perp} \rangle}{dy} \approx \frac{3}{2} \left(\langle m_{\perp} \rangle \frac{dN}{dy} \right)$$

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au collisions from STAR arXiv:0808.2041v1 [nucl-ex] 14 Aug 2008

 $\boldsymbol{\tau}$ is formation time, S is overlapping area

- Higher multiplicity reach at LHC pp, some events should exceed threshold energy density
- Provided it can be considered a statistical system, could even see QGP in pp at ALICE

Heavy-ion physics with ALICE

□ fully commissioned detector & trigger

- alignment, calibration available from pp
- □ first 10⁵ events: global event properties
 - □ multiplicity, rapidity density
 - □ elliptic flow
- □ first 10⁶ events: **source characteristics**
 - □ particle spectra, resonances
 - ❑ differential flow analysis
 - □ interferometry
- □ first 10⁷ events: high-p_t, heavy flavours
 - jet quenching, heavy-flavour energy loss
 - □ charmonium production
- **u** yield bulk properties of created medium
 - **energy density, temperature, pressure**
 - heat capacity/entropy, viscosity, sound velocity, opacity
 - susceptibilities, order of phase transition

early ion scheme

- □ 1/20 of nominal luminosity
- □ ∫Ldt = 5·10²⁵ cm⁻² s⁻¹ x 10⁶ s 0.05 nb⁻¹ for PbPb at 5.5 TeV
 - N_{pp collisions} = 2·10⁸ collisions 400 Hz minimum-bias rate 20 Hz central (5%)
- muon triggers:
 - ~ 100% efficiency, < 1kHz
- centrality triggers:
 bandwidth limited
 N_{PbPbminb} = 10⁷ events (10Hz)
 N_{PbPbcentral} = 10⁷ events (10Hz)

Topological identification of strange particles

Statistical limit : $p_T \sim 8 - 10$ GeV for K⁺, K⁻, K⁰_s, Λ , 3 - 6 GeV for Ξ , Ω

medium modifications of mass, widths

Relativistic hydrodynamics prediction: $v_2/\epsilon \sim constant$

 v_1 = directed flow v_2 = elliptic flow

 Φ – angle with respect to reaction plane

Is the QGP an ideal fluid ?

- one of the first 'expected' answers from LHC
 - Hydrodynamics: modest rise (Depending on EoS, viscosity speed of sound)
 - experimental trend & scaling predicts large increase of flow

Н

С

Beauty: semi-leptonic decays detection strategy

 d_0 and p_T distributions for "electrons" from different sources:

Distributions normalized to the same integral in order to compare their shapes

Semi-electronic Beauty detection simulation results

Signal-to-total ratio and expected statistics in 10⁷ Pb-Pb events

Expected statistics (10⁷ Pb-Pb events)

Jet statistics in pilot Pb run

Jets are produced copiously

η–φ lego plot with Δη $0.08 \times \Delta \phi c 0.25$ izides

Central Pb–Pb event (HIJING simulation) with 100 GeV di-jet (PYTHIA simulation)

Energy fluctuation in UE

Mean energy in a cone of radius R coming from underlying event

Fluctuation of energy from an underlying event in a cone of radius R

More quantitatively ...

Intrinsic resolution limit for E_{T} = 100 GeV

Summary

- The ALICE detector offers excellent tracking and charged par identification over a wide momentum range
- Detectors are ready for data. Much useful experience gained from 2008 operation.
- "First Physics" programme in pp provides a focus for the first measurements. Interesting first survey of the new energy regime can be underway even before calibration of apparatus is complete.
- Long and detailed programme of study available in Pb-Pb collisions.
- In particular, LHC offers the possibility to use hard probes extensively for the first time. Allows use of perturbative methods to calculate yield in absence of partonic medium effects.
- Principal design goal, to maintain high reconstruction efficiency even at the highest Pb-Pb multiplicities (up to dN/dy ~8000), coupled with low material budget and precision vertexing, allows detection of close secondary vertices from heavy flavour.
- High jet cross-sections allow measurement of abundant, fully reconstructed jets.

Jet Finding Algorithms

