SEARCH FOR CHARGED CURRENT COHERENT PION PRODUCTION BY NEUTRINOS AT SCIBOONE

MORGAN WASCKO

BIRMINGHAM PARTICLE PHYSICS SEMINAR 3 December, 2008



## CONTENTS

- Introduction
- SciBooNE Experiment
- Search for Charged Current Coherent Pion Production
- Conclusion



# INTRODUCTION



## MOTIVATION

if neutrinos have mass...

a neutrino that is produced as a  $v_{\mu}$ 

• (e.g. 
$$\pi^+ \rightarrow \mu^+ \nu_{\mu}$$
)

might some time later be observed as a  $v_e$ 

• (e.g. 
$$v_e n \rightarrow e^- p$$
)





## **NEUTRINO OSCILLATION**

$$\begin{pmatrix} \nu_{\mu} \\ \nu_{e} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

• Consider only two types of neutrinos

- If weak states differ from mass states
  - i.e.  $(\mathbf{v}_{\mu} \mathbf{v}_{e}) \neq (\mathbf{v}_{1} \mathbf{v}_{2})$
- Then weak states are mixtures of mass states

$$\left|\nu_{\mu}(t)\right\rangle = -\sin\theta \left|\nu_{1}\right\rangle e^{-iE_{1}t} + \cos\theta \left|\nu_{2}\right\rangle e^{-iE_{2}t}$$

- $P_{osc}(\nu_{\mu} \to \nu_{e}) = \left| \langle \nu_{e} | \nu_{\mu}(t) \rangle \right|^{2}$
- Probability to find  $v_e$ when you started with  $v_{\mu}$



# **NEUTRINO OSCILLATION**

• In units that experimentalists like:

$$P_{osc}(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left( \frac{1.27\Delta m^{2} (\text{eV}^{2}) L(\text{km})}{E_{\nu} (\text{GeV})} \right)$$

- Fundamental Parameters
  - mass squared differences
  - mixing angle
- Experimental Parameters
  - L = distance from source to detector
  - E = neutrino energy





#### **NEUTRINO OSCILLATION OBSERVATIONS**





We Discover the last oscillation channel → θ<sub>13</sub> We CP violation in the lepton sector (v,v) → δ non-zero? We Test of the standard v oscillation scenario (U<sub>MNS</sub>) → Precise measurements of v oscillations (±Δm<sub>23</sub><sup>2</sup>, θ<sub>23</sub>)



#### ACCELERATOR OSCILLATION EXPERIMENTS





#### **BACKGROUND PROCESSES**



Need to understand these processes as well



#### **BACKGROUND PROCESSES**





## **V-NUCLEUS CROSS SECTIONS**

Future neutrino oscillation experiments need precise knowledge of neutrino cross sections near 1GeV



#### Data from old experiments (1970~1980)

Low statistics Systematic Uncertainties

> **New data** from K2K & MiniBooNE revealing surprises



# SCIBOONE DESCRIPTION



#### SCIBOONE EXPERIMENT (FNAL E954)



- Precise measurements of neutrino- and antineutrino-nucleus cross sections near 1 GeV
  - Essential for future neutrino oscillation experiments
- Neutrino energy spectrum measurements
  - MiniBooNE/SciBooNE joint  $v_{\mu}$  disappearance
  - $v_e$  constraint for MiniBooNE



## SCIBOONE COLLABORATION



Universitat Autonoma de Barcelona **University of Cincinnati** University of Colorado, Boulder **Columbia University** Fermi National Accelerator Laboratory **High Energy Accelerator Research Organization** (KEK) **Imperial College London Indiana University** Institute for Cosmic Ray Research (ICRR) **Kyoto University** Los Alamos National Laboratory Louisiana State University **Purdue University Calumet** Universita degli Studi di Roma "La Sapienza" and INFN Saint Mary's University of Minnesota **Tokyo Institute of Technology** Unversidad de Valencia

~60 physicists 5 countries 17 institutions

<u>Spokespeople</u>: M.O. Wascko (Imperial), T. Nakaya (Kyoto)





8 GeV protons sent to target

#### Target Hall

- Beryllium target:71cm long 1cm diameter
- Resultant mesons focused with magnetic horn
- Reversible horn polarity

#### 50m decay volume

- Mesons decay to  $\mu \& v_{\mu}$
- Short decay pipe minimizes µ→v<sub>e</sub>decay

SciBooNE located 100m from the beryllium target





## **BOOSTER NEUTRINO BEAM**





#### **NEUTRINO EVENT GENERATOR (NEUT)**



- QE
  - Llewellyn Smith, Smith-Moniz
  - $M_A = 1.2 \text{GeV}/c^2$
  - P<sub>F</sub>=217MeV/c, E<sub>B</sub>=27MeV (for Carbon)
- Resonant  $\pi$ 
  - Rein-Sehgal (2007)
  - $M_A = 1.2 \text{ GeV}/c^2$
- Coherent  $\pi$ 
  - Rein-Sehgal (2006)
  - $M_A = 1.0 \text{ GeV} / c^2$
- Deep Inelastic Scattering
  - GRV98 PDF
  - Bodek-Yang correction
- Intra-nucleus interactions

#### $CC/NC-1\pi$



## SCIBOONE DETECTOR

2m

#### SciBar

- scintillator tracking detector
- 14,336 scintillator bars (15 tons)
- Neutrino target
- detect all charged particles

 p/π separation using dE/dx

Used in K2K experiment

DOE-wide Pollution Prevention Star (P2 Star) Award

4m

#### Muon Range Detector (MRD)

12 2"-thick steel
+ scintillator planes
measure muon
momentum with range
up to 1.2 GeV/c

Parts recycled from past experiments

#### **Electron Catcher (EC)**

- spaghetti calorimeter
- 2 planes (11 X<sub>0</sub>)
- identify  $\pi^0$  and  $\nu_e$

Used in CHORUS, HARP and K2K



# SCIBOONE TIMELINE

- 2005, Summer Collaboration formed
- 2005, Dec Proposal
- 2006, Jul Detectors move to FNAL
- 2006, Sep Groundbreaking
- 2006, Nov Sub-detectors Assembly
- 2007, Apr Detector Installation
- 2007, May Commissioning
- 2007, Jun Started Data-taking
- 2008, Aug Completed data-taking
- 2008, Nov 1<sup>st</sup> physics result



Only 3 years from formation to 1<sup>st</sup> physics result

# SCIBOONE TIMELIN

#### Groundbreaking ceremony (Sep. 2006)



Detector Assembly (Nov. 2006 -Mar.2007)









## SCIBOONE TIMELINE

#### Detector installation (Apr. 2007)







End-of-run party (Aug. 2008)



## SCIBOONE DATA-TAKING



- Jun. 2007 Aug. 2008
- 95% data efficiency
- 2.52x10<sup>20</sup> POT in total
  - neutrino : 0.99x10<sup>20</sup> POT
  - antineutrino: 1.53x10<sup>20</sup> POT

Many thanks to FNAL Accelerator Division!

Results from full neutrino data set presented today



#### **NEUTRINO EVENT DISPLAYS**



# SEARCH FOR CC COHERENT PION PRODUCTION



## **COHERENT PION PRODUCTION**

## The signal for today's search

- Neutrino interacts with nucleons coherently, producing a pion
- No nuclear breakup occurs

Charged Current (CC):  $\nu_{\mu} + A \rightarrow \mu + A + \pi^{+}$ Neutral Current (NC):  $\nu_{\mu} + A \rightarrow \nu_{\mu} + A + \pi^{0}$ 



Several measurements (before K2K and MiniBooNE)

- both NC and CC
- both neutrino and antineutrino
- >2 GeV (NC), >7 GeV (CC) up to ~100 GeV



## SURPRISES

#### **CC coherent** π<sup>+</sup> K2K, Phys.Rev.Lett. 95,252301 (2005)



No evidence of CC coherent pion production is found at <Ev>=1.3 GeV

 $\sigma(CC \text{ coherent } \pi) / \sigma(CC) < 0.60 \times 10^{-2} (90\% CL)$ (corresponds to 23% of the prediction)

#### NC coherent π<sup>0</sup> MiniBooNE, Phys.Lett. B664,41 (2008)



65% of the model prediction



## **CC** COHERENT PION PRODUCTION

**Signal** CC-coherent  $\pi$  production  $\nu+C \rightarrow \mu+C+\pi^+$ 



• 2 MIP-like tracks (a muon and a pion)

• ~1% of total v interaction based on Rein-Sehgal model





## **CC-1** $\pi^+$ CANDIDATE





#### CHARGED CURRENT (CC) EVENT SELECTION

- Muons identified using MRD
- Tracks should start from SciBar fiducial volume



#### **SciBar-MRD matched event** (~30k events)



93% pure CC-inclusive ( $v+N \rightarrow \mu+X$ ) sample

## 

## **CC** EVENT CLASSIFICATION





## NUMBER OF TRACKS





## PARTICLE IDENTIFICATION

Particle ID using dE/dx in SciBar

Muon confidence level (MuCL)

 $MuCL > 0.05 \rightarrow muon-like$  $< 0.05 \rightarrow proton-like$ 

Mis-ID probability Muon: 1.1% Proton: 12%





## PARTICLE IDENTIFICATION



MuCL for 2<sup>nd</sup> track in 2-track event





## VERTEX ACTIVITY



Low energy proton is detected as large energy deposition around the vertex





## 

## **CC** EVENT CLASSIFICATION




#### Q<sup>2</sup> DISTRIBUTIONS BEFORE TUNING MC



37



# TUNING OF MC SIMULATION

To constrain systematic uncertainties due to

- detector responses
- nuclear effects
- neutrino interaction models
- neutrino energy spectrum

Q<sup>2</sup> distributions of sub-samples are fitted to data





# FITTING PARAMETERS (1)





# FITTING PARAMETERS (2)

#### Parameters related to neutrino interaction models

R<sub>res</sub>: CC-resonant pion production cross section scale factor

> R<sub>other</sub>: other "non-QE" (mainly CC-DIS) cross section scale factor

CC-QE

K: Pauli suppression parameter ( $\varkappa$ >1) Lowest energy of an initial nucleon  $E_{lo} = \kappa (\sqrt{p_F^2 + m_p^2} - \omega + E_B)$ 

- first introduced by MiniBooNE
- employed because similar data deficit is found in low Q2



# $\chi^2$ definition

$$\chi^2 = \chi^2_{\rm dist} + \chi^2_{\rm sys}$$

$$\begin{cases} \chi^2_{\text{dist}} = 2\sum_{i, j} \left( N_{ij}^{\text{exp}} - N_{ij}^{\text{obs}} + N_{ij}^{\text{obs}} \times \ln \frac{N_{ij}^{\text{obs}}}{N_{ij}^{\text{exp}}} \right) \\ \chi^2_{\text{sys}} = (\boldsymbol{P_{sys}} - \boldsymbol{P_0}) \boldsymbol{V}^{-1} (\boldsymbol{P_{sys}} - \boldsymbol{P_0}) \end{cases}$$

Binned likelihood i: Q<sup>2</sup> bins j: sub-samples

Constraint on fitting parameters

#### V: covariance matrix

$$\boldsymbol{P_{sys}} = \begin{pmatrix} R_{\text{res}} \\ R_{2\text{trk}/1\text{trk}} \\ R_{p/\pi} \\ R_{\text{pscale}} \end{pmatrix} \quad , \quad \boldsymbol{P_0} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$



#### **COVARIANCE MATRIX**

$$V_{ij} \equiv \operatorname{cov}[p_i, p_j] = \sum_{\text{source}} \frac{\Delta p_i \Delta p_j|_+ + \Delta p_i \Delta p_j|_-}{2}$$

 $\Delta p_i \Delta p_j|_{+(-)}$ 

the product of variations of two systematic parameters when the underlying physics parameter is increased (decreased) by the size of its uncertainty

Example) CC-resonant pion production cross section

- change the cross section by +/-20%
- take differences of  $(R_{2trk/1trk}, R_{p/\pi})$  from nominal values

$$\Delta(R_{2trk/1trk}) = -3.9\%^{+4.5\%}$$

$$\Delta(R_{p/\pi}) = ^{+4.3\%}_{-5.5\%}$$

$$\frac{\Delta(R_{2trk/1trk})\Delta(R_{p/\pi})|_{+} + \Delta(R_{2trk/1trk})\Delta(R_{p/\pi})|_{-}}{2} = -21 \times 10^{-4}$$



#### **COVARIANCE MATRIX**

$$V_{ij} \equiv \operatorname{cov}[p_i, p_j] = \sum_{\text{source}} \frac{\Delta p_i \Delta p_j|_+ + \Delta p_i \Delta p_j|_-}{2}$$



the product of variations of two systematic parameters when the underlying physics parameter is increased (decreased) by the size of its uncertainty

$$V = \begin{pmatrix} R_{res} & R_{2trk/1trk} & R_{p/\pi} & R_{pscale} \\ (0.20)^2 & -(0.09)^2 & +(0.10)^2 & 0 \\ -(0.09)^2 & (0.09)^2 & -(0.07)^2 & 0 \\ +(0.10)^2 & -(0.07)^2 & (0.15)^2 & 0 \\ 0 & 0 & 0 & (0.02)^2 \end{pmatrix}$$



#### **RECONSTRUCTED** Q<sup>2</sup> AFTER FITTING



After fit :  $\chi^2/ndf = 117/67 = 1.75$ 



# DATA EXCESS IN $\mu$ +P SAMPLE



#### **Features of excess events**

proton candidate goes at large angleadditional activity around the vertex

#### **Possible candidate**

CC resonant pion events in which pion is absorbed in the nucleus





#### DATA EXCESS IN $\mu$ +P SAMPLE



Therefore, we expect migration between the µ+p sample and 1-track sample

While the excess is ~200 events, there are ~10,000 events in low Q<sup>2</sup> 1-track sample ⇒hard to see this effect in 1-track sample

Not expected to affect CC coherent pion measurement

#### 

### **CC** EVENT CLASSIFICATION





#### EXTRACTING CC COHERENT PION EVENTS

# CC-QE rejection CC-resonant pion rejection

kinematic variable:  $\Delta \theta_{p}$ 



3D angle between the expected and observed 2<sup>nd</sup> tracks





#### EXTRACTING CC COHERENT PION EVENTS

# CC-QE rejection CC-resonant pion rejection

Events with a forward-going Pion candidate are selected





#### **CC** COHERENT PION SAMPLE

#### $Q^2 < 0.1 \; (GeV/c)^2$



247 events selected

57 events selected

BG expectation 228+/-12 events

BG expectation 40+/-2.2 events



#### **CROSS SECTION RATIO**

To reduce neutrino flux uncertainty, we measure  $\sigma(CC \text{ coherent } \pi) / \sigma(CC) \text{ cross section ratio}$ 



For denominator, CC inclusive samples are chosen so that they cover similar neutrino energy range as coherent  $\pi$  samples.



#### RESULTS

| MRD stopped sample                     |
|----------------------------------------|
| $\langle Ev \rangle = 1.1 \text{ GeV}$ |

MRD penetrated sample <Ev>= 2.2 GeV  $\sigma(\mathbf{CC \, coherent} \, \pi) / \sigma(\mathbf{CC})$ 

$$= (0.16 \pm 0.17(stat)^{+0.30}_{-0.27}(sys)) \times 10^{-2}$$

 $\sigma(CC \operatorname{coherent} \pi) / \sigma(CC)$ 

 $= (0.68 \pm 0.32(stat)^{+0.39}_{-0.25}(sys)) \times 10^{-2}$ 

No evidence of CC coherent pion production is found



90% CL upper limit (Bayesian)

 $\sigma(\text{CC coherent }\pi) / \sigma(\text{CC}) < 0.67 \times 10^{-2}$  for <Ev>=1.1 GeV < 1.36 \times 10^{-2} <Ev>=2.2 GeV

arXiv:0811.0369, Submitted to PRD



#### SYSTEMATIC ERRORS

|                            | MRD stopped<br>Error (x10 <sup>-2</sup> ) | MRD penetrated<br>Error (x10 <sup>-2</sup> ) |
|----------------------------|-------------------------------------------|----------------------------------------------|
| Detector response          | +0.10 -0.18                               | +0.18 -0.18                                  |
| Nuclear effect             | +0.20 -0.07                               | +0.19 / -0.09                                |
| Neutrino interaction model | +0.17 / -0.04                             | +0.08 / -0.04                                |
| Neutrino beam              | +0.07 / -0.11                             | +0.27/-0.13                                  |
| Event selection            | +0.07 / -0.14                             | +0.06 / -0.05                                |
| Total                      | +0.30 / -0.27                             | +0.39 / -0.25                                |

## SciBooNE

#### DISCUSSION



 $\frac{\text{K2K result (90\% CL U.L.=m+1.28*\sigma)}}{\sigma(\text{CC coherent }\pi) / \sigma(\text{CC}) < 0.60 \text{x}10^{-2}} \text{ for } <\text{Ev}>=1.3 \text{ GeV}$ 

SciBooNE results (Bayesian 90% CL U.L.)

 $\begin{aligned} \sigma(\text{CC coherent } \pi) \, / \, \sigma(\text{CC}) &< 0.67 \times 10^{-2} & \text{for } < E\nu >= 1.1 \text{ GeV} \\ &< 1.36 \times 10^{-2} & < E\nu >= 2.2 \text{ GeV} \end{aligned}$ 

SciBooNE results are consistent with K2K result

### DISCUSSION



Measured upper limits on  $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$  ratios are converted to upper limits on absolute cross sections by using  $\sigma(CC)$  predicted by MC simulation SciBooNE,



# CONCLUSION

- SciBooNE successfully finished data-taking.
- First physics result from SciBooNE
  - No significant evidence of CC coherent pion production is found
  - arXiv:0811.0369 (Submitted to PRD)
- Many analyses are on-going
  - Neutrino cross section measurements (CC-QE, CC-resonant π<sup>+</sup>, CC-π<sup>0</sup>, NC-π<sup>0</sup>, NC-elastic)
  - Neutrino energy spectrum measurements (oscillation with MiniBooNE)
  - Anti-neutrino cross section measurements



# THANK YOU!

# BACKUP SLIDES

#### SCIBAR DETECTOR



Clear identification of v interaction process





## SCIBAR READOUT

۲





Extruded Scintillator (1.3×2.5×300cm<sup>3</sup>) · made by FNAL (same as MINOS)

Wave length shifting fiber (1.5mmΦ)
Long attenuation length (~350cm)
→ Light Yield : ~20p.e./1.3cm/MIP

<u>64-channel Multi-Anode PMT</u> •2x2mm<sup>2</sup> pixel (3% cross talk@1.5mmΦ) •Gain Uniformity (20% RMS) •Good linearity (~200p.e. @6×10<sup>5</sup>) Readout electronics with VA/TA ADC for all 14,336 channels TDC for 448 sets (32 channels-OR)



# ELECTRON CATCHER (EC)

- "spaghetti" calorimeter
- 1mm diameter fibers in the grooves of lead foils
- 4x4cm<sup>2</sup> cell read out from both ends
- 2 planes (11X<sub>0</sub>)

Horizontal: 32 modules Vertical : 32 modules

- Total 256 readout channels
- Expected resolution 14%/VE (GeV)
- Linearity: better than 10%

# dE/dx distribution of vertical plane for cosmic ray muons





62

# **MUON RANGE DETECTOR**

A new detector built with the used scintillators, iron plates and PMTs to measure the muon momentum up to 1.2 GeV/c.



- Iron Plate
  - 305x274x5cm<sup>3</sup>
  - Total 12 layers
- Scintillator Plane
  - Alternating horizontal and vertical planes
  - Total 362 channels





# MUCL CALCULATION

#### plane-by-plane dE/dx measurement



confidence level at each plane is calculated from the plot

MuCL: combined confidence level

$$MuCL = P \times \sum_{i=0}^{n-1} \frac{\left(-\ln P\right)^{i}}{i!} \qquad P = \prod_{i=1}^{n} CL_{i}$$

#### Q<sup>2</sup> RESOLUTION OF CC-COHERENT π SAMPLE



Q2 resolution of CC-coherent π events Mean: -0.024 (GeV/c)<sup>2</sup> Sigma: 0.016 (GeV/c)<sup>2</sup> SciBooNE



# KINEMATICS VARIABLE (1)



Past experiments use kinematic variable t (4-momentum transfer to nucleus) to extract coherent  $\pi$  production

$$|t| = \left[\sum_{\mu, \pi} \mathbf{p}_i^T\right]^2 + \left[\sum_{\mu, \pi} \left(E_i - p_i^{\parallel}\right)\right]^2$$

#### SciBooNE case

Pion is not contained in SciBar with current selection→ not easy to reconstruct pion momentum



#### KINEMATICS VARIABLE (2)





#### DATA EXCESS IN $\mu$ +P





#### FITTING PARAMETERS



### FITTING PARAMETERS

- 8 fitting parameters
- normalization (1)
- migration parameters (3)
- muon momentum scale (1)
- neutrino interaction model parameters (3)

 $\begin{array}{ccc} R_{norm} & : MRD \ stopped \ sample \ normalization \\ R_{2trk/1trk} & : Migration \ between \ 2track \ / \ 1track \ samples \\ R_{p/\pi} & : Migration \ between \ \mu+p \ / \ \mu+\pi \ samples \\ R_{act} & : Migration \ between \ low \ / \ high \ vertex \ activity \ samples \\ R_{pscale} & : Muon \ momentum \ scale \\ R_{res} & : CC-resonant \ pion \ cross \ section \ scale \ factor \\ R_{other} & : Other \ nonQE \ cross \ section \ scale \ factor \\ R_{other} & : Pauli-suppression \ parameter \ for \ CCQE \end{array}$ 



#### FITTING RESULT

| Parameter              | Value | Error |
|------------------------|-------|-------|
| R <sub>norm</sub>      | 1.103 | 0.029 |
| R <sub>2trk/1trk</sub> | 0.865 | 0.035 |
| $R_{p/\pi}$            | 0.899 | 0.038 |
| R <sub>act</sub>       | 0.983 | 0.055 |
| R <sub>pscale</sub>    | 1.033 | 0.002 |
| R <sub>res</sub>       | 1.211 | 0.133 |
| R <sub>other</sub>     | 1.270 | 0.148 |
| kappa                  | 1.019 | 0.004 |



### EVENT SELECTION SUMMARY

| Event selection           | DATA   | Ν      | 4C      | Coherent $\pi$ |
|---------------------------|--------|--------|---------|----------------|
|                           |        | Signal | B.G.    | Efficiency     |
| Generated in SciBar FV    |        | 1,939  | 156,766 | 100%           |
| SciBar-MRD matched        | 30,337 | 978    | 29,359  | 50.4%          |
| MRD stopped               | 21,762 | 715    | 20,437  | 36.9%          |
| 2 track                   | 5,939  | 358    | 6,073   | 18.5%          |
| Particle ID $(\mu + \pi)$ | 2,255  | 292    | 2,336   | 15.1%          |
| Vertex activity cut       | 887    | 264    | 961     | 13.6%          |
| CC-QE rejection           | 682    | 241    | 709     | 12.4%          |
| Pion track direction cut  | 425    | 233    | 451     | 12.0%          |
| Reconstructed $Q^2$ cut   | 247    | 201    | 228     | 10.4%          |



### EVENT SELECTION SUMMARY

| Event selection           | DATA   | Ν                       | 4C      | Coherent $\pi$ |
|---------------------------|--------|-------------------------|---------|----------------|
|                           |        | $\operatorname{Signal}$ | B.G.    | Efficiency     |
| Generated in SciBar FV    |        | 1,939                   | 156,766 | 100%           |
| SciBar-MRD matched        | 30,337 | 978                     | 29,359  | 50.4%          |
| MRD penetrated            | 3,712  | 177                     | 4,375   | 9.1%           |
| 2 track                   | 1,029  | 92                      | 1,304   | 4.7%           |
| Particle ID $(\mu + \pi)$ | 418    | 78                      | 474     | 4.0%           |
| Vertex activity cut       | 167    | 71                      | 186     | 3.6%           |
| CC-QE rejection           | 134    | 67                      | 135     | 3.5%           |
| Pion track direction cut  | 107    | 66                      | 109     | 3.4%           |
| Reconstructed $Q^2$ cut   | 57     | 60                      | 40      | 3.1%           |


## 90% CL UPPER LIMIT

Simple calculation

#### 90% CL upper limit = mean + 1.28 × sigma

(This is for gaussian statistics without physical boundary)



Bayesian approach



$$P(a) = \frac{\int_0^a L(x) dx}{\int_0^\infty L(x) dx} = 0.9$$

L(x)

Probability density function Asymmetric gaussian (mean, sigma+, sigma-)



### **RESULTS** (CONT'D)

# $\frac{90\% CL \text{ upper limit (Bayesian)}}{\sigma(CC \text{ coherent }\pi)/\sigma(CC) < 0.67 \times 10^{-2}} \text{ for } <\text{Ev>=1.1 GeV} < 1.36 \times 10^{-2} \text{ } <\text{Ev>=2.2 GeV}$

#### <u>K2K result (90% CL U.L.=m+1.28\*σ)</u>

 $\sigma$ (CC coherent  $\pi$ )/ $\sigma$ (CC) < 0.60x10<sup>-2</sup> for <Ev>=1.3 GeV



## SYSTEMATIC ERRORS (DETECTOR RESPONSE)

| Source                     | MRD s   | topped            | MRD penetrated           |       |  |
|----------------------------|---------|-------------------|--------------------------|-------|--|
|                            | error ( | $\times 10^{-2})$ | error $(\times 10^{-2})$ |       |  |
| Cross talk                 | +0.04   | -0.05             | +0.12                    | -0.04 |  |
| 1 pe resolution            | +0.05   | -0.02             | +0.07                    | -0.06 |  |
| Scintillator quenching     | +0.03   | -0.17             | +0.07                    | -0.16 |  |
| Pion interaction in SciBar | +0.01   | -0.01             | +0.01                    | -0.00 |  |
| Hit threshold              | +0.07   | -0.03             | +0.09                    | -0.02 |  |
| Subtotal                   | +0.10   | -0.18             | +0.18                    | -0.18 |  |



## SYSTEMATIC ERRORS (NUCLEAR EFFECTS)

| Source                              | MRD stopped              |       | MRD penetrated           |       |
|-------------------------------------|--------------------------|-------|--------------------------|-------|
|                                     | error $(\times 10^{-2})$ |       | error $(\times 10^{-2})$ |       |
| Pion absorption cross section       | +0.00                    | -0.05 | +0.11                    | -0.00 |
| Pion inelastic cross section        | +0.17                    | -0.00 | +0.04                    | -0.00 |
| Nucleon re-scattering cross section | +0.11                    | -0.05 | +0.15                    | -0.08 |
| Fermi momentum                      | +0.02                    | -0.02 | +0.03                    | -0.03 |
| Subtotal                            | +0.20                    | -0.07 | +0.19                    | -0.09 |



## SYSTEMATIC ERRORS (NEUTRINO INTERACTION MODEL)

| Source                                            | MRD stopped              |       | MRD penetrated           |       |
|---------------------------------------------------|--------------------------|-------|--------------------------|-------|
|                                                   | error $(\times 10^{-2})$ |       | error $(\times 10^{-2})$ |       |
| Axial vector mass                                 | +0.16                    |       | +0.05                    |       |
| CC resonant $\mu^- n \pi^+ / \mu^- p \pi^+$ ratio | +0.04                    | -0.04 | +0.04                    | -0.04 |
| Low $Q^2$ suppression in CC resonant pion         | +0.04                    |       | +0.04                    |       |
| Subtotal                                          | +0.17                    | -0.04 | +0.08                    | -0.04 |



## SYSTEMATIC ERRORS (EV SPECTRUM)

- Pi+ production (SW)
- Pi- production (SW)
- K<sup>+</sup> production (FS)
- K<sup>0</sup> production (SW)
- Horn skin effect
- Horn current
- Be-nucleon x-section
- Be-pion x-section

Variation of the cross section ratio using 1,000 multisim parameter sets



→ (+0.07, -0.11) x10<sup>-2</sup> is assigned for the MRD stopped sample



## SYSTEMATIC ERRORS (EVENT SELECTION)

 $\Delta \theta p$  for the  $\mu + \pi$  events



Vary  $\Delta \theta p$  cut by +/-5degrees Take the change as systematic error



## Low $Q^2$ suppression in CC resonant $\pi$



low  $Q^2$  data deficit is observed in CC resonant pion enriched sample

The Q<sup>2</sup> shape uncertainty affects background estimation for CC coherent pion sample



## LOW Q<sup>2</sup> SUPPRESSION

### IN CC RESONANT $\pi$











Apply this weighting function to CC coherent  $\pi$  sample in order to estimate systematic error



#### UNCERTAINTY IN CC RESONANT

#### μηπ/μρπ ratio

The uncertainty in the CC resonant μnπ/μpπ ratio causes migration between low/high activity samples ~

> •  $v n \rightarrow \mu n \pi^+$ •  $v p \rightarrow \mu p \pi^+$



The uncertainty in the CC resonant  $\mu n\pi/\mu p\pi$  ratio is ~7%, estimated using SciBooNE sub-samples

→  $\delta(\sigma(coh) / \sigma(CC)) = + / -0.04 \times 10^{-2}$ considered as systematic error



### FUTURE PROSPECTS

