Higgs coupling measurements with ATLAS

Richard Mudd

University of Birmingham

HEP Seminar, Birmingham $12^{\rm th}$ November 2014

July 2012

Higgs Mechanism

- For Higgs mechanism potential chosen such that electroweak symmetry is hidden
 - Higgs field gets non-zero vacuum expectation value
 - Three degrees of freedom give W^+, W^-, Z mass, one gives new scalar boson - the Higgs boson

- SU(2)_L ⊗ U(1)_Y describes electroweak sector in terms of massless gauge bosons
- In the SM a complex scalar doublet is introduced

Image credit: Philip Tanedo

Higgs Mechanism: Scalar Couplings Structure

Bosonic sector:

- **EWSB** gives mass to W^+, W^-, Z bosons
- Higgs couplings proportional to $m_{W/Z}^2$

$$g_{HVV} = \frac{2m_V^2}{v}$$

Fermionic sector:

- After introducting Higgs field, can add **Yukawa terms** to Lagrangian
- Higgs couplings proportional to fermion mass

Η

$$g_{Hf\bar{f}} = Y_f = rac{m_f}{v}$$

- v is Higgs field vacuum expectation value
- Loops (e.g. γ , gluon) sensitive to BSM physics

Higgs Production at the LHC

Н

00000

- Gluon fusion mode dominates
- Subleading modes essential to tag more difficult decay modes and measure couplings

Higgs Decays at the LHC

- $H \rightarrow b\bar{b}$ has highest rate but challenging due to very large background
- $H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$, $H \rightarrow \tau \tau$ also have relatively high rates but complex final states
- $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ challenging because of low rates but clean final states

Possible Extensions to SM Higgs Sector

• In the SM EWSB is achieved through a single complex scalar doublet but many extensions possible

Additional EW singlet

- Mixing between singlet original Higgs doublet \rightarrow two CP-even bosons
- · Couple to SM particles in a similar way to SM Higgs

Two Higgs Doublet

- Predict 5 Higgs Bosons: 2 neutral CP-even, one neutral CP odd, 2 charged
- e.g. MSSM
- Typically require that models satisfy Glashow-Weinberg condition, e.g.:
 - Type I: one doublet couples to vector bosons, one to fermions
 - Type II: one doublet couples to up-type quarks, the other to down-type and leptons

How does new physics modify Higgs couplings?

- New physics (e.g. extended Higgs sectors) can modify the Higgs couplings
- Modifications depend on mass scale of new physics
- For new physics at 1 TeV scale modifications are typically \sim 1 10 %

Model	κ_V	κ_b	κ_γ
Singlet mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	\sim -0.001%	$\sim 1.6\%$	\sim -0.4%
Composite	\sim -3%	\sim -(3-9)%	\sim -9%
Top Partner	\sim -2%	\sim -2%	$\sim +1\%$

From Snowmass Higgs Working Group Report

ATLAS detector

- Successful operation of ATLAS detector in run I
 - \circ 4.6 fb⁻¹ at $\sqrt{s} = 7 TeV$, 20.3 fb⁻¹ at $\sqrt{s} = 8 TeV$
 - $\circ\ \simeq$ 95% of recorded luminosity good for physics

- Strong detector performance achieved in challenging environment
 - Average 21 interactions per bunch crossing
 - Higher than design pileup

Atlas Higgs physics programme

- ATLAS has published a broad selection of results in the Higgs sector in run I
 - Mass
 - Couplings
 - Spin/CP
 - Differential distributions
 - Rare decays
 - $\circ~$ and more \ldots
- Focus on measurement of coupling properties today
- · Don't have time to discuss individual analyses in detail
 - $\circ~$ Instead a selection of highlights from main inputs to ATLAS combined coupling measurements
 - For bb see Paul Thompson's recent seminar

ATLAS Higgs couplings measurements

ATLAS has recently released updated results for the five most sensitive SM channels using full run I data:

<u>'Signal Strength' μ </u>

- Measured rates reported relative to SM prediction
- Signal strength defined as:

$$u = \frac{\sigma \cdot BR}{\sigma_{SM} \cdot BR_{SM}}$$

- · Measured in decay modes and also for their combination
- Also able to measure rates for specific production modes
 - $\circ~$ Typically denoted with a subscript

$$\mu_{ggF} = \frac{\sigma(ggF) \cdot BR}{\sigma_{SM}(ggF) \cdot BR_{SM}}$$

• Often combine bosonic/fermionic production modes

$$\circ~\mu_{\sf ggF+ttH},~\mu_{\sf VBF+VH}$$

Statistical techniques

• Confidence intervals based on profile likelihood ratio

$$\Lambda(\alpha) = \frac{L(\alpha, \hat{\hat{\theta}}(\alpha))}{L(\hat{\alpha}, \hat{\theta})} = \frac{\text{Maximum likelihood for given } \alpha}{\text{Global maximum likelihood}}$$

- Depends on one of more parameters of interest, $\boldsymbol{\alpha}$
 - \circ e.g. (μ , m_H), (μ_{ggF} , μ_{VBF})
- Systematic uncertainties modelled using nuisance parameters, θ
 - Typically constrained by gaussians
 - Model uncertainties and their correlations
- Likelihood functions built using sums of signal and background pdfs in discriminating variables

$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ analysis

- Low rates but final state with good mass resolution (1.6 2.2 GeV) and high S/B (0.7 1.8)
 - $\circ ~\sigma imes BR \simeq 2.9$ fb for $m_H = 125.5$ GeV
- Two same-flavour, opposite sign lepton pairs
- Low p_T electron/muon performance critical
 - $p_T > 7$ (6) GeV for electrons (muons)
 - Isolation and impact parameter requirements to reduce background

- *m_Z* constrained kinematic fit for *m*₁₂
- FSR photon recovery for *m*₁₂ candidates
- E-p combination for $p_T^e < 30 \text{ GeV}$

$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ categorisation and fit model

Multi-observable fit in production-tagged categories

• Exploit use of BDTs

ggF categories:

• Fit $m_{4\ell}$ and BDT with LO matrix element kinematic discriminant, $p_T^{4\ell}$, $\eta^{4\ell}$

VBF category:

• Fit $m_{4\ell}$ and BDT with jet kinematic variables

VH categories:

• 1D fit to *m*_{4ℓ}

15 of 39

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ categorisation and fit model

+ 5 events in VBF-enriched category, 1 with $BDT_{VBF}\simeq 0.7$

 $\mu_{ggF+bbH+ttH} imes B/B_{SM} = 1.7^{+0.5}_{-0.4}$ $\mu_{VBF+VH} imes B/B_{SM} = 0.3^{+1.6}_{-0.9}$

- · Uncertainties dominated by statistical component
- Expected uncertainty on $\mu_{\textit{VBF+VH}}$ reduced by \simeq 40% compared to preliminary result

16 of 39

$H \rightarrow \gamma \gamma$ analysis

- ${\it H} \rightarrow \gamma \gamma$ decays through t and ${\it W}$ loops in SM
 - Negative interference between t and W contributions
- Two isolated, high p_T photons
- Search for narrow peak (mass resolution 1.3 1.8 GeV) on top of background (S/B \simeq 3%)

- Diphoton invariant mass: $m_{\gamma\gamma}^2 = 2E_1E_2(1 - \cos\alpha)$
 - Neural network based identification of primary interaction vertex
- Backgrounds $\gamma\gamma$ (75%), γj , jj
 - Estimated from sideband fit

$H \rightarrow \gamma \gamma$ categories

Comprehensive categorisation scheme targetting 5 main production mechanisms

Untagged:

• Split based on p_{Tt} and position in detector

VBF:

- Cut on output of BDT
- Loose and tight categories

VH:

- Sensitivity to separate WH and ZH
- Hadronic, leptonic and E_T^{miss} signatures

<u>ttH:</u>

• Hadronic and leptonic top decays

Signal strength for each production mode consistent with SM

18 of 39

$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ analysis

- High rate, relatively clean final state (ee, $e\mu$, $\mu\mu$ with E_T^{miss}/p_T^{miss})
 - $\circ~$ Mass resolution $\simeq 15~{\rm GeV}$
 - ⇒ background control crucial
- Several background sources
 - WW,W+jets,tt,single top, $Z\gamma^*$, $Z \rightarrow \ell \ell$ estimated in data using control regions
 - Other diboson process estimate using MC
 - Background composition depends on lepton flavour, N_{jets}
- Improvements with respect to preliminary analysis
 - Track-based missing E_T
 - Electron Likelihood ID
 - Reduce lepton E_T threshold 15 ightarrow 10 GeV
 - Optimised event categorisation
- Overall 30% reduction of uncertainties on μ w.r.t preliminary results

$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ categories and fit model

- Transverse mass m_T used as discriminant in fit
 - In VBF categories use BDT instead
 - Fit in several signal and control regions
- Rates for ggF and VBF processes consistent with SM
- Observe VBF production with 3.2σ significance

$H \rightarrow \tau \tau$ analysis

- Three final states used in analysis depending on τ decays:
 - $\circ \tau_{lep} \tau_{lep}$
 - $\circ \tau_{lep} \tau_{had}$
 - $\circ \tau_{had} au_{had}$
- $Z \rightarrow \tau \tau$ and fake τ backgronds dominate
- Use missing mass calculator
 - $\circ~$ Use visible $\tau~$ decay products and E_T^{miss} to find most-likely $m_{\tau\tau}$
- $Z \rightarrow \tau \tau$ background from $Z \rightarrow \mu \mu$ embedding method
- BDT used as a discriminating variable in a 6 category (VBF and boosted for each final state) fit
 - Cut-based analysis as cross check

$H \rightarrow \tau \tau$: evidence for Higgs decays to fermions

- Direct evidence for coupling to fermions at 4.5σ level (3.5σ exp)
- $\mu = 1.42^{+0.44}_{-0.38}$ consistent with SM Yukawa coupling prediction

- ATLAS also searches for $H \rightarrow \mu\mu$
- No observed excess of events
- In SM BR(ττ)/BR(μμ) ≃ 300
 ⇒ The Higgs does not couple universally to different flavour leptons

Higgs mass measurement

- Precise measurement of *m_H* important for determining couplings
 - For a shift in mass $\Delta m_H = 400$ MeV, $\sigma \times BR(ZZ)$ changes by $\simeq 3\%$
- ATLAS m_H measurement uses high resolution modes $H \rightarrow \gamma \gamma \ H \rightarrow ZZ^{(*)} \rightarrow 4\ell$
- Improvements with respect to preliminary results
 - $\circ~$ Significantly improved ${\bf e}/\gamma~{\bf calibration}$
 - Systematic on m_H in γγ due to photon energy scale reduced by factor 2.5
 - Improved lepton performace
 - Likelihood-based electron ID
 - E-p combination for electrons
 - S/B for $2\mu 2e$ final state improved from $1.2 \rightarrow 1.8$
 - Multivariate techniques in $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$
 - + BDT as additional observable in fit \rightarrow 8% improvement compared to 1D

Higgs mass measurement

- Combined mass from a simultaneous max. likelihood fit, where $\mu_{\gamma\gamma}$ and $\mu_{4\ell}$ treated as independent free parameters
- Individual measurements compatibility $\simeq 2.0\sigma$
 - $\circ~$ Compatibility in preliminary result was 2.5σ

$$H \rightarrow \gamma \gamma$$
: $m_H = 125.98 \pm 0.42(stat) \pm 0.28(sys)$

 $H \rightarrow 4\ell$: $m_H = 124.51 \pm 0.52(stat) \pm 0.06(sys)$

Comined : $m_H = 125.36 \pm 0.37(stat) \pm 0.18(sys)$

Measuring coupling properties

- Most recent ATLAS couplings combination released March 2014
 - $\circ~\gamma\gamma$, ZZ^(*) ightarrow 4 ℓ , WW^(*) ightarrow IuIu, $au^+ au^-$, $bar{b}$
 - $\circ~$ Also use combination to put constraints on new phenomena
 - $\circ~$ Many of the results shown so far today not yet included in combination
- Note measuring absolute couplings depends on total width:

$$\sigma \times BR(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- In SM $\Gamma_H \simeq 4$ MeV!
 - $\circ~$ Not possible to measure directly at the LHC
- Alternatively, measure ratios of couplings
 - Dependence on Γ_H cancels
- Updated couplings combination with final results planned
 - $\circ\,$ Possibility to include searches for rare decays and $t\bar{t}H$ production in future combinations

Production mode rates

- No combination of μ_{ggF}, μ_{VBF} possible between decay modes
 - Can't distinguish between production and decay for deviations
- Combine ratio instead

 $\mu_{\textit{VBF}}/\mu_{\textit{ggF+ttH}} = 1.4^{+0.5}_{-0.4}(\textit{stat})^{+0.4}_{-0.3}(\textit{sys})$

 4.1σ evidence for VBF Higgs production

κ -framework

- Framework for couplings based on LHC Higgs Cross Section Working Group recommendations
- Leading order framework for a single, SM-like Higgs boson under specific assumptions:
 - Single resonance with a mass near 125 GeV
 - Zero width approximation holds
 - Tensor structure of couplings assumed to be the same as SM
 - $J^P = 0^+$
- Define couplings scale factors κ :

$$\sigma \cdot BR(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H} = \frac{\sigma_i^{SM} \cdot \Gamma_f^{SM}}{\Gamma_H^{SM}} \cdot \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

- $\kappa_i = 1$ corresponds to the SM
- \Rightarrow Idea is to Look for deviations from SM rates

κ -framework

- Framework makes no specific assumptions on additional states of new physics which could interact with the state at $\simeq 125$ GeV, in particular on:
 - Additional Higgs bosons
 - Additional fermions, vector bosons or others scalars (which don't acquire a VEV)
 - Invisible decay modes
- Test benchmark scenarios based on this framework
- Fermion vs vector couplings:
 - Tests EWSB, Yukawa coupling model
 - One scale factor for vector bosons and one for fermions
- Fermion structure:
 - Many SM extensions (e.g. 2HDMs) predict deviations in fermion sector
 - One scale factor for up-type fermions and one for down-type
 - One scale factor for quarks and one for leptons
- Several other benchmarks also tested

<u>Vector boson vs fermion couplings: $H \rightarrow ZZ^{(*)}$ example</u>

Benchmark model with one scale factor for all vector bosons (κ_V), one for all fermions (κ_F)

Vector boson vs fermion couplings

- Total width is sum of known SM Higgs decay modes
 - $\circ~$ Modified appropriately with κ_V and κ_F

 $\kappa_V = 1.15 \pm 0.08$ $\kappa_F = 0.99^{+0.17}_{-0.15}$

- Only relative sign physical \rightarrow set $\kappa_V > 0$
- Sensitivity to relative sign from interference in $H\to\gamma\gamma$ decays
- 2D compatibility of SM with best fit 10%

Free parameters:

 κ_V, κ_F

Vector boson vs fermion couplings

- Assumption on total width gives strong constraint on κ_F
 - $\circ~$ Total width in SM dominated by b, τ and gluon decay widths
- Relax assumption by measuring ratios of scale factors
- Take ratio of fermion and vector scale factors λ_{FV}
- Then κ_{VV} is an overall scale factor which applies to all rates

$$\lambda_{FV} = 0.86^{+0.14}_{-0.12}$$

 $\kappa_{VV} = 1.28^{+0.16}_{-0.15}$

Free parameters:

$$\lambda_{FV} = \kappa_F / \kappa_V, \ \kappa_{VV} = \kappa_V \cdot \kappa_V / \kappa_H$$

Up-type vs down-type fermions

- One scale factor for up-type fermions and one for down-type
- Some SM extensions (e.g some 2HDMs) predict different couplings for up- and down-type fermions
 - e.g. MSSM
- Take ratio of down and up scale factors λ_{du}

$$\begin{split} \lambda_{du} &= 0.95^{+0.20}_{-0.18} \ast \\ \lambda_{Vu} &= 1.21^{+0.24}_{-0.26} \\ \kappa_{uu} &= 0.86^{+0.41}_{-0.21} \end{split}$$

For positive minima

- Little sensitivity to relative sign
- 3D compatibility with SM 20%
- 3.6 σ evidence for coupling to down-type fermions

Free parameters:

$$\lambda_{du} = \kappa_d / \kappa_u, \ \lambda_{Vu} = \kappa_V / \kappa_u, \ \kappa_{uu} = \kappa_u \cdot \kappa_u / \kappa_H$$

Off shell Higgs couplings

• $H \rightarrow VV$ high mass region has sensitivity to off-shell Higgs production

$$\frac{d\sigma_{pp \rightarrow H \rightarrow ZZ}}{dM_{4\ell}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4\ell}^2 - m_H^2) + m_H^2 \Gamma_H^2}$$

• Using κ language

- Combining on- and off-shell results, can interpret as measurement of Γ_H
- Measurement performed by ATLAS using $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow ZZ^{(*)} \rightarrow 2\ell 2\nu$

•
$$\frac{\Gamma_H}{\Gamma_H^{SM}} < 5.7$$
 at 95% CL

Constraints on new phenomena I: Additional Electroweak singlet

- Two Higgs bosons, one light (*h*), one heavy(*H*)
- Couple to vector bosons and fermions similar to SM but modified by scale factors

 $\circ \kappa + \kappa' = 1$

- *h* couplings same as SM, modified by κ
- *H* couplings modified to take into account new decay modes (e.g. $H \rightarrow hh$)

$$\mu_H = {\kappa'}^2 (1 - BR_{H,new})$$

 $\kappa'^2 = 1 - \mu_h$

- Best fit at $\kappa'^2 = -0.30^{+0.17}_{-0.18}$ • 1.5 σ from physical boundary $\kappa'^2 \ge 0$
- Set limits in μ_H , $BR_{H,new}$ plane

Constraints on new phenomena II: Invisible branching ratio and dark matter portals

- Derive upper limits on Higgs BR to invisible final states
- Uses couplings combination combined with upper limits on $ZH \rightarrow \ell\ell + E_T^{miss}$ process
- $BR_i < 0.37$ at 95% CL

- Higgs portal models introduce weakly-interacting massive particles as dark matter candidates
 - $\circ~$ Assumed to interact weakly with SM particles except Higgs boson
- Can compare limits with direct dark matter searches
 - Assuming $m_{WIMP} < 0.5 \cdot m_H$ and $H \rightarrow 2WIMPs$ accounts for all of BR_i

LHC upgrade timescale

- HL-LHC upgrade proposed
 - Goal to collect 3000 fb⁻¹ by 2035

LHC / HL-LHC Plan

- Corresponding proposals for upgrades of the LHC experiments
 - $\circ~$ Central feature of ATLAS upgrade programme a new, all silicon tracking system

Prospects for Higgs coupling measurements at a HL-LHC

√s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹ $H \rightarrow \gamma \gamma$ (comb.) $H \rightarrow 77$ (comb.) $H \rightarrow WW$ (comb.) $H \rightarrow Z\gamma$ (incl.) (comb.) H→bb H→ττ (VBF-like) Η→μμ (comb.) 0.2 0.4 0 $\Delta \mu / \mu$

ATLAS Simulation Preliminary

- ATLAS has studied the prospects for Higgs coupling studies with 3000 ${\rm fb}^{-1}$
- Generator-level MC with parameterised model for detector efficiency and resolution
 - $\circ~$ Parameterisations from Geant4 simulation
 - 140 interactions per bunch crossing
 - $\circ~$ Systematic uncertainties same as run l
 - Data-driven uncertainties scaled with int lumi
- Hashed bands: theoretical uncertainties at their current level
- Projections typically based on older versions of analyses do not include recent improvements
- Possible to measure decay rates to sub 10% level

Prospects for Higgs coupling measurements at a HL-LHC

- Potential to measure coupling ratios down to few % level with 3000 ${\rm fb}^{-1}$
- Projections in terms of scaling of couplings as for run I, but likely to move to a more general framework, e.g. effective field theory

Conclusion

- So far no significant deviation from SM
- Increased precision anticipated during next LHC runs and beyond

- ATLAS used LHC run I dataset to probe the coupling properties of the Higgs
 - Results suggest that a non-zero VEV of a scalar doublet is indeed responsible for EWSB
 - \circ Evidence for Higgs decays to fermions also seen in $\tau\tau$ final state
 - Observed rates agree with SM Yukawa coupling prediction

