Charm in the Proton and LHCb

Philip Ilten

University of CINCINNATI

April 6, 2022

BIRMINGHAM SEMINAR

Three Quarks for Muster Mark

Three Quarks for Muster Mark

Confirmed!

Observed Behavior of Highly Inelastic Electron-Proton Scattering Phys. Rev. Lett. 23, 935 (1969)

Factorisation

 $\sigma(s) \rightarrow \int_0^1 \mathrm{d}x f(x, Q^2) \hat{\sigma}(xs)$

Factorisation

Gluons

Gluons

The Sea

The Sea

Why Not Charm?

Why Not Charm?

A Possible Probe

PRD 93 (2016) 074008

What Can We See?

From Theory to Detector

JINST 10 P06013

Some Machine Learning

JINST 10 P06013

Charm in the Proton and LHCb

Some Expectations

PRD 93 (2016) 074008

Why Not Central?

Some Side Effects

PRD 93 (2016) 074008

Charm in the Proton and LHCb

Changing Things Up

- busier environment during Run2
- dedicated charm tagging can do better
- full particle flow at software trigger level

LHCb-DP-2021-006

Iterative Templates

LHCb-DP-2021-006

Efficiencies

Efficiencies

LHCb-DP-2021-006

Source	Uncertainty (%)		
	D^0	D^+	Combination
D fit models	4	5 - 18	3-6
D efficiency method	1 - 2	3 - 8	1 - 2
Simulation sample size	1	2-4	1
Particle identification	1 - 2	4 - 7	1 - 2
Modeling detector response	2	2	2
Fragmentation & branching fractions	2	3	1
2015-16 vs 2017-18	2	2	2
Total	5-6	9–21	5-7

All In

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

Stats Problems

A Charming Fit

Veggies Before Dessert

Source	Relative Uncertainty
c tagging	67%
DV-fit templates	3–4%
Jet reconstruction	1%
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

The Dessert

Expert Interpretation

Expert Interpretation

LHCb and NNPDF

R. Rojo

Expert Interpretation

Indirect IC Constraints

R. Rojo

Fitting Charm

Charm in the Proton and LHCb

LHCb Data

Charm in the Proton and LHCb

Significance

The End

Conclusions

- Z + c can probe intrinsic charm in the proton
- full particle flow and jet tagging in LHCb Run 2 trigger
- new, more efficient, charm tagging algorithm
- + LHC
b $\sigma(Zc)/\sigma(Zj)$ is not consistent with perturbative charm
- NNPDF fits estimate IC carries 0.5% of proton momentum from LHCb measurement

Thank You!