The W mass measurement at LHCb

Miguel Ramos Pernas

University of Warwick

miguel.ramos.pernas@cern.ch

Seminar at Birmingham 16/03/2022

European Research Council

Established by the European Commission

Outline

Introduction to EW physics

Constraining EW observables

Overview of the current measurements and experiments

The W mass measurement at LHCb

EW physics at LHCb

The analysis of 2016 data

Ongoing studies with the full Run 2 dataset

Prospects for the future

Electroweak theory

The Electroweak theory

Main magnitudes ruling EW interactions are related to each other:

Abdus Salam, Steven Weinberg and Sheldon Lee Glashow

The global EW fit

Global fits to EW observables allow to test current (and new) theoretical model(s)

Past and present of the W mass measurement

7

A wider theoretical picture

- Fundamental magnitude related to other EW observables
- The experimental sensitivity is still away from the theoretical best fit 12 MeV / 7 MeV
- Interesting implications in BSM models with other magnitudes of interest

[JHEP 01 (2022) 036]

The W mass measurement at LHCb

Production mechanism

- A proton-proton collider is more challenging to measure the W mass:
 - W bosons are produced in a mixture of positive and negative helicity states
 - Must accurately describe the angular cross-section (larger uncertainties)
 - More backgrounds through heavy-flavour processes
- But much higher total production cross-section and larger calibration samples
 - One of the main objectives is being able to extrapolate the Z measurements to the W.

Related detector features

- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some overlapping at low pseudorapidity)

W and Z production at LHCb

- Z decays constitute the most natural way of controlling muons from W decays and the cross-section
- Anti-correlation of the PDF uncertainties at low Bjorken-x allows achieving a similar precision of the LHC experiments to the theoretical best fit for the W mass

Anti-correlation of uncertainties from PDFs

Eur. Phys. J. C 75, 601 (2015)

	Run-I 3 fb ⁻¹		Run-II 7 fb ⁻¹	
	$\overline{W^+}$	W^{-}	$\overline{W^+}$	<u>W</u> -
Signal yields, $\times 10^6$	1.2	0.7	5.4	3.4
Z/γ^* background, (B/S)	0.15	0.15	0.15	0.15
QCD background, (B/S)	0.15	0.15	0.15	0.15
δ_{m_W} (MeV)				
Statistical	19	29	9	12
Momentum scale	7	7	4	4
Quadrature sum	20	30	10	13

Single event signature

Results from other experiments

 $m_W = 80387 \pm 12_{
m stat} \pm 15_{
m syst} {
m MeV}$

 $m_W = 80367 \pm 13_{
m stat} \pm 22_{
m syst} {
m MeV} \quad m_W = 80370 \pm 7_{
m stat} \pm 11_{
m exp. \ syst.} \pm 14_{
m theo. \ syst.} {
m MeV}$

- Barrel-like detectors allow to measure missing transverse energy and the transverse mass
 - Measurement can be done measuring different quantities
- In modern experiments, a similar sensitivity can be obtained measuring the momentum of the outgoing lepton

Analysis strategy

- Carefully measure the muon transverse momentum
- Use plain LHCb Pythia8 simulation and reweight using samples with generator-level information from different models
- Corrections due to the efficiencies of the different selection steps (reconstruction, trigger, topological, offline selection)
- Study and determine background from simulation (except for the contribution from hadrons originating decays-in-flight)

[JHEP 01 (2022) 036]

Detector alignment and calibration

- The LHCb trigger changed significantly for Run 2
- Real-time alignment and calibration can be optimized offline for EW studies
- Need to re-process the data using dedicated tools
- Apply corrections and smearing to simulation to account for subtle effects that significantly affect the momenta distributions

LHCb 2015 Trigger Diagram 40 MHz bunch crossing rate L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz h± μ/μμ e/y Software High Level Trigger Partial event reconstruction, select displaced tracks/vertices and dimuons Buffer events to disk, perform online detector calibration and alignment Full offline-like event selection, mixture of inclusive and exclusive triggers 12.5 kHz (0.6 GB/s) to storage

Calibration using muons

Charge-dependent curvature biases

- The analysis relies highly on the detector alignment
 - \circ Misalignment of 10µm translates into a O(50MeV) shift
- Default LHCb alignment and calibration not suitable to study candidates with high transverse momentum
- Need to re-run the alignment and calibration offline using Z
- Avoid double bias from the momentum resolution using the pseudo-mass method

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)} \quad {}_{\rm Ir}$$

Inspired by Phys. Rev. D 91, 072002

The W mass measurement at LHCb

Charge-dependent curvature biases

Fit the asymmetries to the pseudomass and translate this into shifts in q/p

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

Corrections to the simulation

Miguel Ramos Pernas

slide)

The W mass measurement at LHCb

The W cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\vartheta\mathrm{d}\varphi} = \underbrace{\frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M}}_{(\mathrm{At order }\alpha_{s}^{2})} \left\{ (1 + \cos^{2}\vartheta) + A_{0}\frac{1}{2}(1 - 3\cos^{2}\vartheta) + A_{1}\sin2\vartheta\cos\varphi \\ + A_{2}\frac{1}{2}\sin^{2}\vartheta\cos2\varphi + A_{3}\sin\vartheta\cos\varphi + A_{4}\cos\vartheta \\ + A_{5}\sin^{2}\vartheta\sin2\varphi + A_{6}\sin2\vartheta\sin\varphi + A_{7}\sin\vartheta\sin\varphi \right\}$$
Angular part: DYTurbo

Simulating signal decays

- POWHEG + Pythia gives the best description of the unpolarized cross-section and is chosen as the baseline generator
 - Varied success with other generators, used to determine systematic uncertainties
- DYTurbo performs well at reproducing the angular cross-section

Modelling the W boson transverse momentum

The limited knowledge on the transverse momentum of the W bosons can be compensated by floating QCD floating parameters [arXiv:1907.09958]

Modelling the boson transverse momentum

[arXiv:2112.07458 (submitted to JHEP)]

 $\frac{d\sigma}{dp_T^Z}$ [pb/(GeV/c)] The momentum of the outgoing 10 muon is strictly related to that of the boson LHCb 5.1 fb⁻¹ Must ensure the correlation is $\sqrt{s} = 13 \text{ TeV}$ + 0 maintained after the fit Fit Z variables simultaneously Ο Statistical Uncertainty **Total Uncertainty** Resbos 10^{-1} Pythia, LHCb tune $\phi^* \equiv rctan\left(rac{\pi-\Delta\phi}{2}
ight)/\cosh\left(rac{\Delta\eta}{2}
ight) \sim rac{p_T}{M}$ **POWHEG+Pythia** MatchBox 10^{2} 10 [EPJC 71, 1600 (2011)] p_T^Z [GeV/c]

Polarized cross-section

- Angular part is better described with DYTurbo
- However, there angular coefficients suffer low accuracy at low transverse momentum values [JHEP 11 (2017) 003]
- Uncertainties from DYTurbo mitigated by floating A₃
 - Otherwise the uncertainty would be O(20 MeV)

The simulation process (PDF set)

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

Selections

- EW physics with leptons in the final state can be done at LHCb with simple selections based on the transverse momentum, impact parameter, isolation and particle identification
- Selection biases studied in data and simulation for Z and Y(1S) decays (isolation biases only studied in the former)
 - Associated systematic uncertainties determined by varying the binning scheme, parametrizations and selections

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2 ig(\mathrm{rad}^{-2} ig)}$$

Determining the efficiencies

Three main sources of acceptance biases:

- Trigger efficiencies
- Muon-identification efficiencies
- Isolation requirements

Miguel Ramos Pernas

-40

0.8

0.6

0.4

0.2

0

0.9

-60

Efficiency

Ratio

Backgrounds

- Most of them modelled from dedicated simulated samples
 - Single-top, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
 - $\circ \quad \ \ {\rm Cross-sections\ normalized\ to\ the\ W}$
- Description of the QCD background (decays-in-flight) obtained from data
 - Sample with inverted muon-identification requirements
 - Weight and parametrize the data using a Hagedorn distribution
- Accurately describes the Jacobian peak (region with highest sensitivity to $m_{\rm W}$)

The W mass measurement at LHCb

Systematic uncertainties

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]		Average of NNPDF31, CT18 and MS	
Source	Size (MeV)	systematic uncertainties	
Parton distribution functions	9.0 -		
Total theoretical syst. uncertainty (excluding PDFs)	17.4	 Envelope of five different mode 	
Transverse momentum model	12.0 -		
Angular coefficients	9.0 -	Uncertainty due to scale variati	
QED FSR model	7.2 -		
Additional electroweak corrections	5.0 -	Envelope of the QED FSR from	
Total experimental syst. uncertainty	9.7	Pythia, Photos and Herwig. Additional correction from	
Momentum scale and resolution modelling	7.5	PowhegEW	
Muon ID, tracking and trigger efficiencies	4.3	Гоннедин	
Isolation efficiency	3.9		
QCD background	2.3	Already thinking of ways to improv most of these uncertainties!	
Statistical	22.7		
Total uncertainty	31.4		

Fit to extract the W mass

- 5D-weighted fit using the Beeston-Barlow approach
- Fit simultaneously W and Z data

LHCb measures the W mass!

- Measurement of the W mass using 2016 data
- Published on January 2022
- Shows the LHCb capabilities of doing high-precision measurements

Prospects for the future

What can we do in the near future?

Is including 2017 and 2018 data straight-forward?

- It is straight-forward, but we must ask ourselves the following questions:
 - Can we optimize any part of the analysis strategy?
 - Can we use any of the new options available in the market?
 - Are there ways to make the result more accessible/easy to use for people outside the collaboration?
- The result using 2016 data shows the capabilities of the LHCb detector to contribute to this measurement, but it is worth re-considering our strategy before studying the full Run 2 data sample

Improving the simulation

- Take advantage of the latest developments on the theory side
 - Switch to more accurate predictors of the boson production
 - New PDF sets (NNPDF 4.0)
- Change the treatment generators / PDF sets when calculating systematic uncertainties
 - Drop known inaccurate PDF sets
 - Revisit the way to handle the different predictors and the order of the accuracy (NLL, NNLL, ...)
- Ongoing studies, feedback is really welcome!

Towards doing an unfolded measurement

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

- Ongoing studies to see if we can publish the unfolded transverse momentum distribution
- Facilitate comparing prediction and observables
- Quite challenging from the experimental point of view:
 - Must have a good control of the backgrounds (especially in the selection variables)
 - The systematic uncertainties might turn much bigger with the unfolding methods

Expected sensitivity for the full Run 2 analysis

- We expect to reduce the overall experimental uncertainty to 15 MeV
- The analysis becomes systematically dominated
 - A more careful description of the physics is necessary
- Eager to see the result of combining the measurements of all the LHC experiments

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

Summary

$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

The W mass measurement at LHCb

Looking forward to hearing your comments and suggestions

16/03/2022

Summary

- The W mass measurement using 2016 data is a big milestone at LHCb
- Already exploring new strategies to improve the result with the full Run 2 data sample
- Improvements on the physics modelling are strictly necessary to be competitive

Thank you!