Max Baak (CERN), on behalf of the Gfitter group (*) University of Birmingham / Warwick, UK January 14th / 15th, 2015

EPJC 74, 3046 (2014), arXiv:1407.3792

The global electroweak fit at NNLO Prospects for LHC and ILC

(*) M. Baak, J. Cuth, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

This presentation:

- Introduction to the Electroweak Fit
 - Inputs to the electroweak fit
 - Full set of 2-loop calculations and theory uncertainties
- ✓ After the Higgs: predictions for key observables
- Modified Higgs couplings
- ✓ Prospects for LHC and ILC
- Conclusion & Outlook

A Generic Fitter Project for HEP Model Testing

- Gfitter = state-of-the-art HEP model testing tool
- Latest results always available at: <u>http://cern.ch/Gfitter</u>
 - (Most) results of this presentation: EPJC 74, 3046 (2014)

- Gfitter software and features:
 - Modular, object-oriented C++, relying on ROOT, XML, python, etc.
 - Core package with data-handling, fitting, and statistics tools
 - Independent "plug-in" physics libraries: SM, 2HDM, multiple BSM models, ...

- Observables receive quantum loop corrections from 'unseen' virtual effects.
- If system is over-constrained, fit for unknown parameters or test the model's self-consistency.
- ✓ If precision is better than typical loop factor (α≈1/137), test the model or try to obtain info on new physics in loops.
 - For example, in the past EW fits were used to predict the Higgs mass.

Global EW fits: a long history

Huge amount of pioneering work by many!

- Needed to understand importance of loop corrections
 - Important observables (now) known at least at two-loop order, sometimes more.
- High-precision Standard Model (SM) predictions and measurements required
 - First from LEP/SLC, then Tevatron, now LHC.
- Top mass predictions from loop effects available since ~1990.
 - Official LEPEW fit since 1993.
- The EW fits have always been able to predict the top mass correctly!

Global EW fits: many fit codes

- EW fits performed by many groups in past and present.
 - D. Bardinet al. (ZFITTER), G. Passarino et al. (TOPAZ0), LEPEW WG (M. Grünewald, et al.), J. Erler (GAP), Bayesian fit (M. Ciuchini et al.), etc ...
 - Important results obtained!
- Several groups pursuing global beyond-SM fits, especially SUSY.
- Global SM fits also used at lower energies [CKM-matrix].
- Fits of the different groups agree very well.
- Some differences in treatment of theory errors, which just start to matter.
 - E.g. theoretical and experimental errors added linearly (= conservative) or quadratically.
 - In following: theoretical errors treated as Gaussian (quadratic addition.)

The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow f\bar{f}$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}
 ight)fZ_{\mu}$ where z
- Prediction EWSB at tree-level:

$$\frac{M_W^2}{M_Z^2 \cos \theta_W^2} = 1$$

- The impact of loop corrections
 - Absorbed into EW form factors: ρ, κ, Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

$$f \qquad H \qquad H \\ \uparrow \\ \gamma, Z/W \qquad Z/W$$

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$

$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

Max Baak (CERN)

The electroweak fit at NNLO – Status and Prospects

The SM fit with Gfitter, including the Higgs

2InA

- Discovery of Higgs-like boson at LHC
- Cross section, production rate time • branching ratios, spin, parity sofar compatible with SM Higgs boson.
- This talk: assume boson is SM Higgs.
- Use in EW fit: $M_{H} = 125.14 \pm 0.24 \text{ GeV}$
- ATLAS: M_H = 125.36 ± 0.37 ± 0.18 GeV CMS: $M_{H} = 125.03 \pm 0.27 \pm 0.14 \text{ GeV}$ [arXiv:1406.3827, CMS-PAS-HIG-14-009]
- Change in average between fully uncorrelated and fully correlated systematic uncertainties is minor: $\delta M_{\textrm{H}}: 0.24 \rightarrow 0.32 \; GeV$
 - EW fit unaffected at this level of precision

Unique situation:

- For first time SM is fully over-constrained.
- And for first time electroweak observables can be unambiguously predicted at loop level.
- Powerful predictions of key observables now possible, much better than w/o M_H.

Can now test for:

- \rightarrow Self-consistency of SM.
- \rightarrow Possible contributions from BSM models.
- Part of focus of this talk ...

Measurements at the Z-pole (1/2)

CERN

- Total cross-section of $e^-e^+ \rightarrow Z \rightarrow f\bar{f}$
 - Expressed in terms of partial decay width of initial and final width:

$$\sigma^Z_{f\bar{f}} = \sigma^0_{f\bar{f}} \frac{s\Gamma^2_Z}{(s - M_Z^2)^2 + s^2\Gamma^2_Z/M_Z^2} \frac{1}{R_{\rm QED}} \quad \text{with} \quad \sigma^0_{f\bar{f}} = \frac{12\pi}{M_Z^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{\Gamma_Z^2}$$

Corrected for QED radiation

- Full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$
- (Correlated set of measurements.)
- Set of input (width) parameters to EW fit:
 - Z mass and width: M_Z , Γ_Z
 - Hadronic pole cross section:

$$\sigma_{
m had}^0 = 12\pi/M_Z^2 \,\cdot\, \Gamma_{ee}\Gamma_{
m had}/\Gamma_Z^2$$

• Three leptonic ratios (lepton univ.):

$$R^0_\ell = R^0_e = \Gamma_{
m had}/\Gamma_{ee} \left(=R^0_\mu = R^0_ au
ight)$$

• Hadronic-width ratios: R_b^0 ,

Definition of Asymmetry

• Distinguish vector and axial-vector couplings of the Z

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = \frac{2g_{V,f} g_{A,f}}{g_{V,f}^{2} + g_{A,f}^{2}}$$

Directly related to: $\sin^{2} \theta_{\text{eff}}^{f\bar{f}} = \frac{1}{4Q_{f}} \left(1 + \mathcal{R}e\left(\frac{g_{V,f}}{g_{A,f}}\right)\right)$

- Observables
 - In case of no beam polarisation (LEP) use final state angular distribution to define *forward/backward asymmetry:*

 $A^f_{L\!R} = \frac{N^f_L - N^f_R}{N^f_L + N^f_R} \frac{1}{\langle |P|_e \rangle} \quad A^0_{L\!R} = A_e$

 $A_{FB}^{f} = \frac{N_{F}^{J} - N_{B}^{J}}{N_{T}^{f} + N_{T}^{f}} \qquad A_{FB}^{0,f} = \frac{3}{4}A_{e}A_{f}$

• Measurements: $A_{FB}^{0,\ell}, A_{FB}^{0,c}, A_{FB}^{0,b}$ A_{ℓ}, A_{c}, A_{b}

Latest averages for M_w and m_{top}

The ElectroWeak fit of Standard Model

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

• Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Leptonic term known up to four loops (for $q^2 \gg m_l^2$) [C.Sturm, arXiv: 1305.0581]
- Top quark contribution known up to 2 loops, small: -0.7x10⁻⁴ [M. Steinhauser, PLB 429, 158 (1998)]

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Hadronic contribution (from the 5 light quarks) completely dominates overall uncertainty on $\alpha(M_Z)$.
- Difficult to calculate, cannot be obtained from pQCD alone.
 - Analysis of low-energy e⁺e⁻ data
 - Usage of pQCD if lack of data

$$\Delta \alpha_{had}^{(5)}(M_Z) = (274.9 \pm 1.0) \cdot 10^{-4}$$

Similar analysis to evaluation of hadronic contribution to (g-2)_µ

[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]

Theoretical inputs at NNLO

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_7^2}}\right)$

Theoretical inputs at NNLO

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

- 1. Experimental precision (<1%), better than typical loop factor ($\alpha \approx 1/137$) \rightarrow Requires radiative corrections at 2-loop level.
- 2. Before Higgs discovery: uncertainty on M_H largest uncertainty in EW fit. \rightarrow *After:* inclusion of all relevant theoretical uncertainties.

(Part of focus of this talk ...)

Theoretical inputs at NNLO

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!
- In EW fit with Gfitter we use state-of-the-art calculations:
 - sin²θ^f_{eff} Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - Mw Mass of the W boson [M. Awramik et al., arXiv:0311148v2]

[Kuhn et al., hep-hp/0504055,0605201,0606232]

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_E M_Z^2}}\right)$

- Γ_{had} QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]
 - N³LO prediction of the hadronic cross section
 - Partial Z decay widths [A. Freitas, JHEP04, 070 (2014)] New!
- New: all EWPOs^(*) now described at 2-loop level or better!

full fermionic

2-loop calc.

Theory uncertainties from unknown H.O. terms

-			
Most important observables:	Observable	Exp. error	Theo. error
	M_W	15 MeV	4 MeV
	$\sin^2 \theta_{\text{eff}}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$
	Γ_Z	2.3 MeV	0.5 MeV
	$\sigma_{\text{had}}^0 = \sigma[e^+e^- \rightarrow Z \rightarrow \text{had.}]$	37 pb	6 pb
	$R_b^0 = \Gamma[Z \to b\overline{b}] / \Gamma[Z \to \text{had.}]$	$6.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$
	m_t	0.76 GeV	$\leq O(1) \text{ GeV}$
 Old setup: two nuisance p 			
• δM_W (4 MeV), $\delta sin^2 \theta'_{eff}$ (4.7	in FW fit		

Newly included in EW fit setup:

- Full fermionic 2-loop corrections of partial Z decay widths (A. Freitas)
 - 6 corresponding nuisance parameters. ($\delta\Gamma_Z = 0.5 \text{ MeV}$)
- Γ_{had} QCD Adler functions at N³LO
 - 2 nuisance parameters.
- Top quark mass: conversion from measurement to pole to MS-bar mass
 - Agnostic value used here: $\delta_{theo} m_t = 0.5 \text{ GeV}$. (more later)

Max Baak (CERN)

Electroweak Fit – Experimental inputs

	MH [Ge
atest experimental inputs:	M_W [Ge
Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)]	Γ_W [GeV
M _W and Γ_W from LEP/Tevatron [arXiv:1204.0042, arXiv:1302.3415]	M_Z [GeV Γ_Z [GeV
m _{top} latest avg from Tevatron+LHC [arXiv:1403.4427]	$\sigma_{ m had}^0 \ [{ m nb}] R_\ell^0$
m _c , m _b world averages (PDG) [PDG, J. Phys. G33,1 (2006)]	$A^{0,\ell}_{ m FB} \ A_\ell \ ^{(\star)}$
$\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency [Davier et al., EPJC 71, 1515 (2011)]	$\sin^2 \theta_{\text{eff}}^{\ell}(0)$
M _H from LHC [arXiv:1406.3827, CMS-PAS-HIG-14-009]	A_b $A_{\mathrm{FB}}^{0,c}$
(+10) free fit parameters:	$egin{array}{c} A_{ m FB}^{0,0} \ R_c^0 \end{array}$
M_{H} , M_{Z} , $\alpha_{S}(M_{Z}^{2})$, $\Delta \alpha_{had}^{(5)}(M_{Z}^{2})$,	R_b^0
m _t , m _c , m _b	\overline{m}_c [GeV
10 theory nuisance parameters	\overline{m}_b [GeV
e.g. δM_W (4 MeV), $\delta sin^2 \theta^{I}_{eff}$ (4.7x10 ⁻⁵)	$m_t \; [\text{GeV}]$

$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
M_W [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	Tevatron
M_Z [GeV]	91.1875 ± 0.0021	
$\Gamma_Z \ [GeV]$	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_{ℓ}	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018	SLC
$\sin^2\theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	·
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	SLC
$A^{0,c}_{\mathrm{FB}}$	0.0707 ± 0.0035	•
$A^{0,b}_{ m FB}$	0.0992 ± 0.0016	LEP
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	
$\overline{m}_c [{ m GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07}$	_
$m_t ~[{ m GeV}]$	173.34 ± 0.76	Tevatron
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \triangle)}$	2757 ± 10	+ LHC

•	From the	Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
	Gfitter group:	$M_H \ [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}
	www.cern.ch	M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006
	/gfitter	Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
•	Left: full fit result	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010
		Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
		$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
		R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
		$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
		$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
	Middle: fit	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
	excluding the row Right: not incl. theory errors	A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
		A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
		$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
		$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
 F ir e 		R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
		R_b^0	0.21629 ± 0.00066	-	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
		\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	-	_
		\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	-	_
		$m_t \; [{ m GeV}]$	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(\bigtriangledown)}$	$177.0^{+2.3}_{-2.4}(\heartsuit)$	177.0 ± 2.3
		$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \triangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
		$\alpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

The ElectroWeak fit of Standard Model

- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

- No individual value exceeds 3σ
- Largest deviations in b-sector: A^{0,b}_{FB} with 2.5σ
- \rightarrow largest contribution to χ^2
- Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Small changes from switching between 1 and 2-loop calc. for partial Z widths and small M_W correction.
 - χ^2_{min} (complete setup) = 17.8
- χ^2_{min} (1-loop Z width) = 18.0
- χ^2_{min} (no M_W correction) = 17.4
- χ^2_{min} (no extra theory errors) = 18.2

Goodness of Fit

- Toy analysis: p-value for wrongly rejecting the SM = 21 ± 2 (theo) %
 - p-value is equivalent to 0.8σ
 - Evaluated with 20k pseudo experiments follows χ^2 with 14 d.o.f.
 - For comparison: χ^2_{min} = 17.8 \rightarrow Prob(χ^2_{min} , 14) = 21 %
 - Large value of χ^2_{min} not due to inclusion of M_H measurement.
 - Without M_H measurement: χ^2_{min} = 16.3 \rightarrow Prob(χ^2_{min} , 13) = 23%

Higgs results of the EW fit

M_н [GeV]

History of Higgs mass predictions

The EW fits have always been able to predict the Higgs mass correctly!

Prediction of W mass

- Scan of $\Delta \chi^2$ profile versus M_W
 - Also shown: SM fit with minimal inputs: M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H , and fermion masses
 - Good consistency between total fit and SM w/ minimal inputs
- M_H measurement allows for precise constraint on M_W
 - Agreement at 1.4σ
- Fit result for indirect determination of M_W (full fit w/o M_W):

$$I_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

 $= 80.358 \pm 0.008_{tot} \text{ GeV}.$

- More precise estimate of M_W than the direct measurements!
 - Uncertainty on world average measurement: 15 MeV

 Λ

Obtained with simple error

propagation

Prediction of effective weak mixing angle

- Right: scan of Δχ² profile versus sin²θ^l_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

Fit result for indirect determination of sin²θ^I_{eff}:

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_t} \pm 0.000016_{\delta_{\text{theo}}m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.00001_{M_H} \pm 0.000047_{\delta_{\text{theo}} \sin^2 \theta_{\text{eff}}^{f}},$$

$$= 0.23149 \pm 0.00007_{\text{tot}},$$

$$\text{Obtained with simple error}$$

- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴

Max Baak (CERN)

propagation

Prediction of top mass

- Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Remember: fully obtained from radiative corrections!
- Indirect result: m_t = 177.0^{+2.3}_{-2.4} GeV

Tevatron+LHC: 173.34 ± 0.76 GeV *new Tevatron-only:* 174.34 ± 0.64 GeV

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

State of the SM: loop vs tree-level observables

- Scan of M_H vs m_{top} (left) and M_W vs sin² θ^{I}_{eff} (right), with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

- M_{W} and sin² θ^{I}_{eff} have become *the* sensitive probes of new physics!
 - Reason: both are 'tree-level' SM predictions.

Max Baak (CERN)

The electroweak fit at NNLO – Status and Prospects

Theoretical uncertainty on m_{top}

• $\delta_{theo} m_t$: unc. on conversion of measured top mass to MS-bar mass

- Sources: ambiguity top mass definition, fragmentation process, pole \rightarrow MS conv.
- Predictions for δ_{theo} m_t: between 0.25 0.9 GeV or greater.
 [Moch etal, aX:1405.4781, Mangano: TOP'12, Buckley etal, aX:1101.2599, Juste etal: aX:1310.0799]
- $\delta_{theo} m_t$ varied here between 0 and 1.5 GeV, in steps of 0.5 GeV.
- Better assessment of $\delta_{theo} m_t$ of relevance for the EW fit. (see also backup)

Max Baak (CERN)

Prediction for $\alpha_s(M_Z)$ **from Z** \rightarrow **hadrons**

- Scan of $\Delta \chi^2$ versus α_s
 - Also shown: SM fit with minimal inputs: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z) M_H, and fermion masses
- Determination of α_s at full N²LO and partial N³LO.
 - Most sensitive through total hadronic crosssection σ⁰_{had} and partial leptonic width R⁰₁

$$\begin{array}{ll} \alpha_s(M_Z^2) &=& 0.1196 \pm 0.0028_{\exp} \pm 0.0006_{\delta_{\mathrm{theo}}\mathcal{R}_{V,A}} \pm 0.0006_{\delta_{\mathrm{theo}}\Gamma_i} \pm 0.0002_{\delta_{\mathrm{theo}}\sigma_{\mathrm{had}}^0} \\ &=& 0.1196 \pm 0.0030_{\mathrm{tot}} \ , & \text{Most affected by new theory uncertainties} \\ &=& Before: \delta_{theo} = 0.0001 \end{array}$$

- In good agreement with value from τ decays, at N³LO, and with WA.
 - (Improvements in precision only expected with ILC/GigaZ. See later.)

Max Baak (CERN)

Constraints on BSM models

- If energy scale of NP is high, BSM physics could appear dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak form factors
 - $\Delta\rho$, $\Delta\kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc.
- Electroweak fit sensitive to BSM physics through oblique corrections x

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: extended parameters (VWX), correction to Z→bb couplings.

[Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]

Fit results for S, T, U

- S,T,U parameters obtained directly from fit to the EW observables.
- SM: M_H = 125 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H
- Fit result (with U floating):

$S = 0.05 \pm 0.11$		S	Т	U
	S	1	+0.90	-0.59
$T = 0.09 \pm 0.13$	Т		1	-0.83
$U = 0.01 \pm 0.11$	U			1

- Also results for Z→bb correction (see backup)
- No indication for new physics.
- Use this to constrain 4th gen, Ex-Dim, T-C, Higgs couplings (in backup)

Stronger constraints with U=0.

Modified Higgs couplings

- Study of potential deviations of Higgs couplings from SM.
- BSM modeled as extension of SM through effective Lagrangian.
 - Consider leading corrections only.
- Popular benchmark model:
 - Scaling of Higgs-vector boson (κ_V) and Higgs-fermion couplings (κ_F) with no invisible/undetectable width
 - (Custodial symmetry is assumed.)
 - "Kappa parametrization"

- Involving the longitudinal d.o.f.
- Most BSM models: κ_V < 1
 - Additional Higgses typically give *positive* contribution to M_W.

$$L_{V} = \frac{h}{v} \left(2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$$
$$L_{F} = -\frac{h}{v} \left(\kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$$

$$H$$

$$K_{V} = K_{V}$$

$$Z/W = Z/W$$

• Main effect on EWPO due to Higgs coupling to gauge bosons (κ_V).

•
$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right)$$
, $T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right)$, $\Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$

- Formulas from: Espinosa et al [arXiv:1202.3697]
- Cut-off scale A represents mass scale of new states that unitarize longitudinal gauge-boson scattering.
 - (As required in this model.)
- λ is varied between 1 and 10 TeV, -0.3 nominally fixed to 3 TeV (4πν).

Reproduction of ATLAS and CMS results

Max Baak (CERN)

The electroweak fit at NNLO – Status and Prospects

Higgs coupling results

- Some dependency for κ_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV].
- 1. EW fit sofar more precise result for κ_V than current LHC experiments.
- 2. EW fit has positive deviation of κ_V from 1.0.
 - (Many BSM models: $\kappa_V < 1$)

Prospects for the Standard Model fit

Two prospects scenarios: LHC, ILC/GigaZ

Prospects of EW fit tested for two (three) scenarios:

- 1. LHC Phase-1 = before HL upgrade
- 2. ILC with GigaZ (*)
- 3. (FCC-ee in backup)

(*) GigaZ:

- Operation of ILC at lower energies like Z-pole or WW threshold.
 - Allows to perform precision measurements of EW sector of the SM.
- At Z-pole, several billion Z's can be studied within ~1-2 months.
 - Physics of LEP1 and SLC can be revisited with few days of data.

In following studies: central values of input measurements adjusted to M_H = 125 GeV.

• (Except where indicated.)

Future Linear Collider can improve precision of EWPO's tremendously.

- WW threshold scan + kinematic reconstruction, to obtain M_W
 - From threshold scan: δM_W : 15 \rightarrow 5 MeV
- *ttbar threshold scan, to obtain m*_t
 - Obtain m_t indirectly from production cross section: $\delta m_t: 0.8 \rightarrow 0.1 \mbox{ GeV}$
 - Dominated by conversion from threshold to MSbar mass.
- Z pole measurements
 - High statistics: 10^9 Z decays: $\delta R^{0}_{\text{lep}}: 2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision.

ILC prospects: from ILC TDR (Vol-2).

LHC Phase-1 (300/fb)

- *W* mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

LHC prospects: possibly optimistic scenario, but not impossible.

LHC Phase-1 (300/fb)

- *W* mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

For both LHC and ILC:

- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR), KLOE-II, VEPP-2000 (at energy below cc resonance), and BESIII e⁺e⁻ cross-section measurements (around cc resonance).
 - Plus: improved α_s (from reliable Lattice predictions): $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming ~25% of today's theoretical uncertainties on M_W and $sin^2\theta_{eff}^I$
 - *Implies ambitions three-loop electroweak calculations!*
 - $\delta M_W (4 \rightarrow 1 \text{ MeV})$, $\delta \sin^2 \theta \mid_{eff} (4.7 \times 10^{-5} \rightarrow 1 \times 10^{-5})$ (from Snowmass report)
 - Partial Z decay widths at 3-loop level: factor 4 improvement
 - LHC: top quark mass theo uncertainty: $0.50 \rightarrow 0.25 \text{ GeV}$

Prospects of EW fit

- Indirect prediction M_H dominated by experimental uncertainties.
 - Present: $\sigma(M_{\rm H}) = {}^{+31}_{-26} (exp) {}^{+10}_{-8}$ (theo) GeV
 - LHC: $\sigma(M_H) = {}^{+20}_{-18} (exp) {}^{+3.9}_{-3.8} (theo) \text{ GeV}$
 - ILC: $\sigma(M_H) = {}^{+6.9}_{-6.6} (exp) {}^{+2.5}_{-2.3} (theo) \text{ GeV}$
- Logarithmic dependency on $M_H \rightarrow cannot \ compete \ with \ direct \ M_H \ meas.$
- If EWP-data central values unchanged, i.e. keep favoring low value of Higgs mass (93 GeV), ~5σ discrepancy with measured Higgs mass.

- Huge reduction of uncertainty on indirect determinations of m_t, m_W, and sin²θ^l_{eff}, by a factor of 3 or more.
- Assuming central values of m_t and M_W do not change, (at ILC) a deviation between the SM prediction and the direct measurements would be prominently visible.

Impact of individual uncertainties

Breakdown of individual contributions to errors of M_W and sin²θ^I_{eff}

					Experimental uncertainty source $[\pm 1\sigma]$					
Parameter	$\delta_{\rm meas}$	$\delta_{\mathrm{fit}}^{\mathrm{tot}}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	$\delta_{\rm fit}^{\rm exp}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{\text{eff}}^f$	$\delta\Delta\alpha_{ m had}$	$\delta \alpha_S$
				\Pr	esent uncer	rtainties				
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
					LHC pros	pects				
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
$m_t [{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
				ILO	C/GigaZ p	rospects				
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.3	1.3	0.7	0.3
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.2	_	1.5	0.1
M_Z [MeV]	2.1	2.7	1.0	2.6	2.5	-	0.4	1.3	1.9	0.2

^(o)In units of 10^{-5} .

• M_W and $sin^2\theta_{eff}^{I}$ are sensitive probes of new physics! For all scenarios.

• At ILC/GigaZ, precision of M_Z will become important again.

- For STU parameters, *improvement of factor of >3* is possible at ILC.
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements!
 - (At level of 1%.)

Conclusion and Today's prospects

- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
 - p-Value of global electroweak fit of SM: 21% (pseudo-experiments)
- New: N²LO calcs and theo. uncertainties for all relevant observables.
 - $\delta_{theo} m_t$ starting to become relevant.
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (28 \rightarrow 8 MeV), $\sin^2\theta_{eff}^{I}$ (2.3x10⁻⁵ \rightarrow 0.7x10⁻⁵), m_t (6.2 \rightarrow 2.5 GeV)
- Improved accuracies set benchmark for new direct measurements!
- δM_W (indirect) = 8 MeV
 - Large contributions to δM_w from top and unknown higher-order EW corrections
- δM_W (direct) = 15 MeV

- Including new data electroweak fits remain very interesting in the next years!
- Latest results always available at: <u>http://cern.ch/Gfitter</u>

A Generic Fitter Project for HEP Model Testing

Backup

Input correlation coefficients between Z pole measurements

	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{\scriptscriptstyle \mathrm{FB}}$		$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
M_Z	1	-0.02	-0.05	0.03	0.06	$A^{0,c}_{\scriptscriptstyle \mathrm{FB}}$	1	0.15	0.04	-0.02	-0.06	0.07
Γ_Z		1	-0.30	0.00	0.00	$A^{0,b}_{\scriptscriptstyle \mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
$\sigma_{ m had}^0$			1	0.18	0.01	A_c			1	0.11	-0.06	0.04
R^0_ℓ				1	-0.06	A_b				1	0.04	-0.08
$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$					1	R_c^0					1	-0.18

Table 2: Correlation matrices for observables determined by the Z lineshape fit (left), and by heavy flavour analyses at the Z pole (right) [56].

- Partial widths are defined inclusively: contain both QCD and QED contributions.
- Corrections expressed as so-called radiator functions R_{A,f} and R_{V,f}

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 \frac{R_{A,f}}{R_{A,f}} + |g_{V,f}|^2 \frac{R_{V,f}}{R_{V,f}} \right)^2$$

- High sensitivity to the strong coupling α_s
- Recently, full four-loop calculation of QCD Adler function became available (N³LO)
- Much-reduced scale dependence!
- Theoretical uncertainty of ~0.15 MeV, compared with experimental uncertainty of 2.0 MeV.

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]
 [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Calculation of M_w

- Full EW one- and two-loop calculation of fermionic and bosonic contributions.
- One- and two-loop QCD corrections and leading terms of higher order corrections.
- Results for Δr include terms of order $O(\alpha)$, $O(\alpha \alpha_s)$, $O(\alpha \alpha_s^2)$, $O(\alpha^2_{ferm})$, $O(\alpha^2_{bos})$, $O(\alpha^2 \alpha_s m_t^4)$, $O(\alpha^3 m_t^6)$
- Uncertainty estimate:
 - Missing terms of order O(α²α_s): about 3 MeV (from O(α²α_sm_t⁴))
 - Electroweak three-loop correction O(α³): < 2 MeV
 - Three-loop QCD corrections $O(\alpha_s^3)$: < 2 MeV
- Total: δM_W ≈ 4 MeV

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

Calculation of $sin^2(\theta_{eff}^I)$

Effective mixing angle:

$$\sin^2 heta_{
m eff}^{
m lept} = \left(1 - M_{
m W}^2/M_{
m Z}^2
ight) \left(1 + \Delta\kappa
ight)$$

- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections.
- Fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵.
- Uncertainty estimate obtained with different methods, geometric progression, leading to total of: $\delta sin^2(\theta^{l}_{eff}) = 4.7 \times 10^{-5}$

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)]

[M Awramik et al., JHEP 11, 048 (2006)]

Uncertainty in Top mass definition

- Difficult to define a pole mass for heavy, unstable and colored particle.
 - Single top decays before hadronizing. To have colorless final states, additional quarks needed.
 - Non-perturb. color-reconnection effects in fragmentation → biases in simulation.
 - 'Renormalon' ambiguity in top mass definition.
 - For pole mass, not for MS-bar scheme.
 - Impact of finite top width effects.
- Result: m_t^{exp} ≠ m_t^{pole}, and event-dependent.
- The top mass extracted in hadron collisions is not well defined below a precision of $O(\Gamma_t) \sim 1 \text{ GeV}$
- Hard to estimate additional theo. uncertainties. With 0.5 GeV on m_t:
 - $M_{H} = 90^{+34}_{-21}$ GeV, $M_{W} = 80.359 \pm 0.013$ GeV, $\sin^2\theta_{eff} = 0.23148 \pm 0.00010$.
 - \rightarrow Sofar only small deterioration in precision.

Interesting Top pole mass measurement

• From: ATLAS-CONF-2014-053:

"top-quark pole mass measurement from ttbar+1jet events"

- $\Rightarrow m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat)} \pm 1.4 \text{ (syst)}^{+1.0}_{-0.5} \text{ (theo) GeV}$
- Great to see these efforts ongoing!
 - Similar measurements / tests ongoing at CMS.

Moriond 2011: Prediction for Higgs mass

- LEP + Tevatron (Fall 2010) :
 - CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-5.2}^{+17.9}$ GeV
 - 2 σ interval:
 - $-2\ln Q: [115,152] \text{ GeV}$ $CL_{s+b}^{2-sided}: [114,155] \text{ GeV}$
- LEP + Tevatron (Moriond 2011) :
 - CL_{s+b}^{2s} central value $\pm 1\sigma$: $M_{H} = 120.2_{-4.7}^{+12.3}$ GeV
 - 2 σ interval:

 $-2\ln Q: [115,138] \text{ GeV} \\ CL_{s+b}^{2-sided}: [114,149] \cup [152,155] \text{ GeV}$

- Fit with LEP + Tevatron + LHC (H→WW) searches (Moriond 2011) :
- Central value unchanged
- 2σ interval:

 $-2\ln Q: [115,137] \text{ GeV}$ $CL_{s+b}^{2-sided}: [114,14?] \text{ GeV}$

Global Fit of electroweak SM and beyond

 Low energy observables with interesting precision will soon become available.

The ElectroWeak fit of Standard Model

Two prospects scenarios: LHC, ILC/GigaZ

Experimental input $[\pm 1\sigma_{exp}]$

Uncertainty estimates used:

Parameter	Present	LHC	ILC/GigaZ
M_H [GeV]	0.4	< 0.1	< 0.1
M_W [MeV]	15	8	5
M_Z [MeV]	2.1	2.1	2.1
$m_t [{ m GeV}]$	0.8	0.6	0.1
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16	16	1.3
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [10^{-5}]$	10	4.7	4.7
R_l^0 [10 ⁻³]	25	25	4
$\alpha_s(M_Z^2) \ [10^{-4}]$	_	_	_
$S _{U=0}$	_	_	_
$T _{U=0}$	_	—	_
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01

- ILC prospects from: ILC TDR (Vol-2).
- Theoretical uncertainty estimates from recent Snowmass report
- Central values of input measurements adjusted to M_H = 126 GeV.

Max Baak (CERN)

The ElectroWeak fit of Standard Model and Beyond

• From TLEP prospects: arXiv:1308.6176

Table 9: Selected set of precision measurements at TLEP. The statistical errors have been determined with (i) a one-year scan of the Z resonance with 50% data at the peak, leading to 710^{11} Z visible decays, with resonant depolarization of single bunches for energy calibration at O(20min) intervals;(ii) one year at the Z peak with 40% longitudinally-polarized beams and a luminosity reduced to 20% of the nominal luminosity; (iii) a one-year scan of the WW threshold (around 161 GeV), with resonant depolarization of single bunches for energy calibration at O(20min) intervals; and (iv) a five-years scan of the t \bar{t} threshold (around 346 GeV). The systematic uncertainties indicated below are only a "first look" estimate and will be revisited in the course of the design study.

Quantity	Physics	Present		Statistical	Systematic	Key	Challenge
		precision		uncertainty	uncertainty		
$m_{\rm Z}~({\rm keV})$	Input	91187500 ± 2100	Z Line shape scan	5 keV	< 100 keV	E_{beam} calibration	QED corrections
$\Gamma_{\rm Z}$ (keV)	$\Delta \rho (\text{not} \Delta \alpha_{\text{had}})$	2495200 ± 2300	Z Line shape scan	8 keV	< 100 keV	E_{beam} calibration	QED corrections
Rt	α_{s}, δ_{b}	20.767 ± 0.025	Z Peak	0.0001	< 0.001	Statistics	QED corrections
N_{ν}	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008	< 0.004		Bhabh a scat
N_{ν}	and sterile v's	2.92 ± 0.05	$Z\gamma$, 161 GeV	0.001	< 0.001	Statistics	
$R_{\rm b}$	δ _b	0.21629 ± 0.00066	Z Peak	0.000003	< 0.000060	Statistics, small IP	Hemisphere correlations
ALR	$\Delta_{\rho}, \epsilon_3, \Delta \alpha_{had}$	0.1514 ± 0.0022	Z peak, polarized	0.000015	< 0.000015	4 bunch scheme, 2ex p	Design experiment
m_W (MeV)	$\Delta \rho$, ϵ_3 , ϵ_2 , $\Delta \alpha_{had}$	80385 ± 15	WW threshold scan	0.3 MeV	< 0.5 MeV	Ebsam, Statistics	QED corrections
$m_{\rm top}~({\rm MeV})$	Input	173200 ± 900	tt threshold scan	10 MeV	< 10 MeV	Statistics	Theory interpretation

Experimental inputs – Predicted uncertainties

	Experimental input $[\pm 1\sigma]$								
Parameter	Present	LHC	ILC	C/Gig	aΖ	TLEP			
M_H [GeV]	0.4 ⊨	< 0.1		< 0.1		< 0.1			
M_W [MeV]	$15 \Rightarrow$	8	⇒	5	⇒	1.3			
M_Z [MeV]	2.1	2.1		2.1	⇒	0.1			
$m_t \; [\text{GeV}]$	0.9 	0.6		0.1		0.08			
Γ_Z [MeV]	2.3	2.3	⇒	0.8	⇒	0.1			
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16	16	⇒	1.3	⇒	0.3			
$R_l^0 \ [\cdot 10^{-3}]$	25	25	⇒	4	⇒	1.3			
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [\cdot 10^{-5}]$	10 ➡	4.7		4.7		4.7			
$\alpha_{s}(M_{Z}^{2}) \ [\cdot 10^{-4}]$	_	_		_		—			
$\delta_{\rm th} M_W$ [MeV]	4 ➡	1		1		1			
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	4.7 ➡	1		1		1			

FCC-ee scenario:

- Preliminary estimates
- Clearly not the same level of understanding as LHC or ILC.
- Uncertainties may turn out completely different.
 - From arXiv:1308.6176,
 - and Snowmass report.
 - Of these two, we take most conservative estimate.
- Note: top mass dominated by theoretical uncertainty.
- Higher statistics

From beam energy precision: improved M_Z and Γ_Z

Prospects of the EW fit: Higgs mass (126 GeV)

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - ILC with (without) theory errors:
 - ILC with present-day theory uncertainties:
 - FCC-ee with (without) theory errors:

 $M_{\rm H} = 126^{+10}_{-9} (\pm 7) \, {\rm GeV}$

$$M_{\rm H} = 126^{120}_{-17} \,\,{\rm GeV}$$

$$M_{H}$$
 = 126 ± 5 (±3) GeV

Prospects of the EW fit: Higgs mass (94 GeV)

- If EWP-data central values are unchanged, i.e. they keep favoring low value of Higgs mass (94 GeV), >5σ discrepancy with measured Higgs mass.
 - In both ILC and FCC-ee scenarios.

Prospects of the EW fit: W mass and $sin^2\theta^{I}_{eff}$

Max Baak (CERN)

The ElectroWeak fit of Standard Model and Beyond

Prospects of the EW fit: W mass versus $sin^2\theta^{I}_{eff}$

- Huge reduction of uncertainty on indirect determinations of m_W , and $sin^2 θ^{I}_{eff}$, by a factor of ≥3 (≥4-5) at ILC (FCC-ee).
- Assuming central values of M_W and sin²θ^I_{eff} do not change, a deviation between the SM prediction and the direct measurements would be prominently visible, at both ILC and FCC-ee.
 - But also in LHC-300 scenario, from improved theory uncertainties.

Confrontation of measurement and prediction

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}^{I}$
- Parametric uncertainties (not the full fit).

error due to uncertainty $(\pm 1\sigma)$

Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	δ_{exp}	δM_Z	δm_t	$\delta\Delta\alpha_{\rm had}$	$\delta lpha_{S}$	$\delta_{ m theo}$
	Present	15	10.4	6.4	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	2.6	0.6	0.9	0.4	1.0
	Future	1.3	2.0	1.0	0.1	0.5	0.9	0.3	1.0
	Present	16	9.5	4.8	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	LHC	16	4.1	3.1	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	1.5	0.3	1.6	0.2	1.0
	Future	0.3	2.7	1.7	0.1	0.3	1.6	0.2	1.0
(0)In units of 1	0-5								

m units or ro

- M_{W} and sin² θ^{I}_{eff} are sensitive probes of new physics! In all scenarios.
- At ILC/GigaZ, precision of M_7 will become important again.
- At FCC-ee ('Future'), limited by external inputs: theory errors and $\Delta \alpha_{had}$

Prospects of the EW fit: W versus top mass

 Huge reduction of uncertainty on indirect determinations of m_t and m_W by a factor of ≥3 (≥5) at ILC (FCC-ee).

 Assuming central values of m_t and M_W do not change, a deviation between the SM prediction and the direct measurements would be prominently visible.

Prospects of EW fit: S versus T

- For STU parameters, improvement of factor of ≥4 (≥10) is possible at ILC (FCC-ee).
- Again, at both ILC and FCC-ee a deviation between the SM predictions and direct measurements would be prominently visible.

Predicted uncertainties from EW fit

	error due to uncertainty (± 1)						y ($\pm 1\sigma$)			
Parameter	$\delta_{ m meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{\rm fit}^{\rm exp}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	δM_W	δM_Z	δm_t	$\delta \sin^2\!\theta^\ell_{\rm eff}{}^{\scriptscriptstyle(\circ)}$	$\delta\Delta\alpha_{\rm had}{}^{(\circ)}$	$\delta lpha_{S}{}^{(riangle)}$
					ILC pros	spects				
M_H [GeV]	< 0.1	$^{+9.6}_{-9.0}$	$^{+6.9}_{-6.6}$	$^{+2.7}_{-2.4}$	$^{+4.2}_{-0.8}$	$^{+4.4}_{-4.0}$	$^{+0.9}_{-0.8}$	$^{+3.1}_{-3.3}$	$^{+4.2}_{-4.1}$	$^{+0.6}_{-0.6}$
M_W [MeV]	5	3.6	1.9	1.7	_	1.7	0.3	1.2	0.7	0.2
$M_Z~[{ m MeV}]$	2.1	3.7	2.6	1.1	2.4	_	0.5	1.3	1.9	0.3
$m_t [{ m GeV}]$	0.1	1.0	0.7	$^{+0.3}_{-0.2}$	$^{+0.5}_{-0.6}$	0.5	_	$^{+0.3}_{-0.2}$	0.4	_
$\sin^2 \theta_{ m eff}^{\ell}$ (°)	1.3	3.2	2.0	1.2	1.7	1.2	0.2	_	1.5	0.1
$\Delta \alpha_{\rm had}$ (°)	4.7	8.6	5.7	2.9	2.5	4.2	0.8	3.9	—	0.5
				H	Tuture pro	ospects				
M_H [GeV]	< 0.1	5.3	3.3	2.0	3.0	0.3	1.0	$^{+0.0}_{-1.2}$	3.2	0.6
M_W [MeV]	1.3	1.9	0.4	1.5	_	0.1	0.3	0.2	0.1	0.1
$M_Z~[{ m MeV}]$	0.1	1.5	1.0	0.5	1.0	_	0.3		0.9	0.4
$m_t [{ m GeV}]$	0.08	0.38	0.24	0.14	0.24	0.03	_	0.01	0.22	0.02
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	0.3	$^{+2.8}_{-2.4}$	1.4	$^{+1.5}_{-1.1}$	1.2		0.1	_	1.3	0.5
$\Delta \alpha_{\rm had}$ (°)	4.7	0.4	0.1	0.3			0.1	0.1	_	

 $^{(\circ)}$ In units of 10^{-5} . $^{(\bigtriangleup)}$ In units of 10^{-4}

- Breakdown of uncertainties derived from EW fit. (Note: *correlated* errors.)
- Compared to parametric breakdown: reduced experimental, but increased theory errors. Slightly smaller total errors.
Hunt for the Higgs

Gfitter group, EPJC 72, 2003 (2012)

- M_H was last missing input parameter of the electroweak fit
- Indirect determination from EW fit (2012): M_H = 96⁺³¹₋₂₄ GeV
 - With direct limits incorporated in the EW fit: $M_H = 120^{+12}_{-5} \text{ GeV}$