

Large Area Picosecond Photo-Detectors

Matthew Malek

University of Birmingham Particle Physics Seminar 9th March 2022

Introduction

Photodetectors have been a staple of particle physics for decades, with the conventional PMT a stalwart 'workhorse' of the field.

Photodetection will continue to play a critical role in particle detectors but...

Next-generation experiments have challenges of size & cost.

Advancing photosensor technology is a high-impact means of expanding our physics reach; many efforts on this front (*e.g.*, high-QE PMTs, hybrid photosensors). This talk focuses on one particular effort – LAPPDs.

LAPPD Overview

• Overview of Large Area Picosecond Photo-Detectors:

LAPPDs are:

- 400 cm² sensors
 (20cm x 20 cm)
- Based on microchannel plate technology (MCPs) [see next slide]
- Excellent resolutions:
 - Spatial: < 1 cm
 - Timing: < 100 ps (TTS)
- Capable of imaging single photons

Microchannel Plate PMTs

Microchannel plates themselves are not new technology

Example: Used in night vision goggles since 1970s

MCP PMTs are also not new

- Photonis Planacon has been in production for many years
- Limitations:
 - Small (~5cm x 5cm)
 - Expensive (~\$10k)

The LAPPD project was formed in 2009 to make this technology practical for particle physics experiments!

09 Mar 2022

MCP-PMT Imaging

For more information, please see:

A Brief Technical History of the Large-Area Picosecond Photodetector Collaboration (Adams et al, 2016) – https://arxiv.org/abs/1603.01843

LAPPDs Development

Areas targeted for improvement included:

- Microchannel plates:
 - Selection of substrates:
 Drawn glass capillaries, etched aluminium considered
 - Development of atomic layer deposition:
 Resistive coatings and secondary-emitting coatings
- Photocathodes:
 - Transfer of techniques for K₂NaSb photocathodes to 20cm square photocathodes on borosilicate glass
- Hermetic packaging:
 - Sealing of large tile <u>not</u> trivial! (see upcoming slide)
- Electronics readout:
 - Development of "PSEC" series of ASIC chips

LAPPDs Milestones

Initial work focussed on advancing separate work packages

- Example: First "working" LAPPD had functional MCP... but needed to be continuously pumped <u>and</u> had a poor photocathode (aluminium)
- Small-scale (6cm x 6cm) prototype tiles were produced at Argonne National Lab to develop photocathode, electronics, etc.

First working LAPPD! [not sealed; aluminium photocathode (QE = 10⁻⁷)]

For UK-based tests with the Argonne MCP-PMT, see:

Characterisation and testing of a prototype 6 x 6 cm² Argonne MCP-PMT (G. A. Cowan et al 2016) https://arxiv.org/pdf/1611.00185.pdf

09 Mar 2022

LAPPD Commercialisation

- The University Of Sheffield.
- Following R&D at US universities and national labs, commercialisation was transferred to a US-based company (Incom) and the design was refined.

M 2.50ps

09 Mar 2022

Matthew Malek

Save

LAPPD Commercialisation


```
4) Measure & Test
```

The University

Of Sheffield.

5) LAPPDtm

6) Tile Integration & Seal

LAPPD Early Production

09 Mar 2022

LAPPD Redesign (2016)

New, streamlined design has fewer spacer layers: ullet

LAPPD #7

fewer layers, minimal bow

multiple layers with bow

Stack Height – High	Stack Height – Low
Failed Seal	Cracked Window

More LAPPD production

- Tile #7 (July 2016): Failed seal (window contamination?) Tile #8 (Aug 2016): Electrical problems
- Tile #9 (Sep 2016): First success!
- On 14th September 2016, Incom achieved the first successful fabrication of a functioning LAPPD!
- **Caveat:** Photocathode is aluminium (extremely low QE: 10⁻⁹)
- Usual bialkali photocathode (Na K Sb) had been replaced to check whether cathode deposits on the indium were contributing to poor seals.
- Tile #10 produced in October 2016 with usual bialkali photocathode; → Second success!
- Since then, production has been ongoing; tile count now in triple digits!

LAPPD: "Final" product

(Some) LAPPD properties:

- Transit time spread (TTS) better than 60 picosec for single PE resolutions
- Gain > 10⁷
- Readout via 28 striplines (Gen1) or 64 capacatively coupled "pixels" (Gen2)

Testing at Incom

Tile #15

Quantum Efficiency:

QE vs. Wavelength & Time

09 Mar 2022

Tile #15 Performace

Operating voltage:

- 1000 1100 V
- Positive or negative (usually run with negative HV)

Quantum efficiency:

• Max = 35% ; Ave = 30% ; Min = 21%

Dark noise:

• 258 Hz (at 1000 V)

Gain:

• 2.8 x 10⁶

Readout speed:

1.8 ns (along the strip)

Saturation:

- None measured
- Tested w/ O(10k) photons

Dead space:

Along cross spacers

Independent Tile Testing

place at UK Universities (Sheffield, Edinburgh)

 \rightarrow See upcoming slides

09 Mar 2022

position (cm)

LAPPDs in UK

First three LAPPDs arrived in the UK in Autumn 2021:

• Sheffield:

- 2x Gen1 LAPPDs
- Stripline anode readout
- LAPPDs #96 & #104
- Ordered for WATCHMAN

• Edinburgh:

- 1x Gen2 LAPPD
- Pixel anode readout
- Ordered for LHCb

Upcoming LAPPDs in the UK include:

- Glasgow:
 - 1x Gen2 LAPPD ordered
 - Expected in Spring 2022

Initial testing will involve basic characterisation (similar to tests at US universities), and developing UK expertise.

These include:

- Timing resolution
- Position resolution
- Basic QE
- QE vs. wavelength
- Dark count

More advanced follow-on tests in Sheffield test tank (2000 litres)

LAPPDs in UK

First three LAPPDs arrived in the UK in Autumn 2021:

• Sheffield:

- 2x Gen1 LAPPDs
- Stripline anode readout
- LAPPDs #96 & #104

Initial testing will involve basic characterisation (similar to tests at US universities), and developing UK expertise.

Initial Setup @ Sheffield

LAPPD 96 housed in custom dark box

- 5 HV connections used
 - Each MCP needs for entry + exit
 - Reminder: 2 MCPs per LAPPD
 - Also apply HV to photocathode
 - Resistor chain added (see next slide)
- Readout:
 - Initially used commercial scope (Tektronix 6)
 - Now using 32-channel VME digitiser (5 GS/s) from CAEN
 - Will transition later to PSEC
 - Signals via Incom SMA pickup

09 Mar 2022

Initial Setup

LAPPD Connections in a Dark Box: Ground-Referenced HV Supplies

09 Mar 2022

Muon coincidence

- Motivation: dark noise measurements distorted by large signals
 - Set up scintillator paddles to tag coincidences
 - Steady rate of muon events seen, with ~70 ns timing offset between the paddle and LAPPD #104

Dark noise rate measurement

- **Motivation:** Understanding dark noise rate critical for incorporating LAPPDs into event reconstruction
 - Tile left in the dark to "cool down" for one hour before testing
 - Photocathode voltage varied to gain broader understanding

LED measurements

- **Motivation:** Study timing and position resolution via dual-ended readout of anode striplines
 - Fibre held over centre of channel 1
 - Centre of tile (numbering goes from -14 to + 14, w/o a "0")
 - Coincidence can also be seen with pulser driving light source

Timing & position

HOT OFF THE PRESS! (Last week!)

Measurements made by stepping LED along the strip (parallel) in 25mm increments:

- -75 mm
- -50 mm
- -25 mm
- 0 mm
- +25 mm
- +50 mm
- +75 mm

Strong position tracking is clearly visible (see next slide)

09 Mar 2022

Time Difference vs Position - L104 - V_MCP=825V - V_PC=50V

09 Mar 2022

Next Steps

"PocketWATCH" is a 2000 litre (2 tonne) test tank facility at Sheffield

Construction from 316 SS is compatible with a variety of materials, including:

- Ultra-pure water,
- Gadolinium-loaded water,
- Liquid scintillator
- Gd-loaded liquid scintillator

25 cm dry region allows for deployment of calibration systems via 5-dimensional gantry system

^{1m} Water is purified and temperature controlled, settings from 5 – 35 C.

Next Steps

"PocketWATCH" is a 2000 litre (2 tonne) te

egion allows for of calibration 5-dimensional m

rified and controlled, n 5 – 35 C.

09 Mar 2022

PocketWATCH Facility

Currently operational for PMT testing; easy to add LAPPDs as well!

This facility allows cross-testings of multiple photosensors, including:
Using PMTs & LAPPDs in water-based liquid scintillator to do Cherenkov / scintillation measurements with fast timing!

09 Mar 2022

Further Tests

Other, more advanced UK tests being considered include:

- Measuring / comparing magnetic susceptibility (alongside PMTs) by using Helmholtz coils to induce a tunable B field.
- Joint characterisation with other novel photosensor ideas, such as wavelength shifting plates read out by SiPM strips along the edges:
- R&D to adapt LAPPDs for use with other detectors *Example:* Replace glass window with MgF crystal and a CsI photocathode for use in VUV expts, such as LAr or LXe.

Introducing BOLEYN

BOLEYN is a ~25 tonne testbed being built at Boulby Underground Lab

- When construction is completed in 2023, it will allow LAPPD tests in a quiet (low background) environment
- Initial instrumentation includes:
 - 90x 10" PMTs (Hamamatsu R7081)
 - 03x LAPPD (2x Gen1 + 1x Gen2)
 - 01x WLS plate w/ SiPM strip readout

FIRST USE IN EXPTS: ANNIE

ANNIE: Accelerator Neutrino-Nucleus Interaction Experiment

The ANNIE Experiment

Primary physics objective:

A measurement of the abundance of final state neutrons ("neutron yield") from neutrino interactions in water, as a function of energy.

09 Mar 2022

The ANI

Primary physic

A measurement of from neutrino inter

Current status: All PMTs installed

26 tonne water volum with Gadolinium

MRD completed LAPPDs being prepar

Commissioning w/ be

Motivation for LAPPDs

ANNIE is a small (3m ϕ , 4m h) water Cherenkov detector at Fermilab, requiring excellent V (~10cm).

First deployment of LAPPDs in ANNIE coming up this year!

20

15

0

Count/2 cm

LAPPD Deployment

Initial ANNIE running planned for 5 downstream LAPPDs

As more LAPPDs (and \$£) becomes available, can actively deploy elsewhere in detector without major interruption in running...

Conclusions

- Improved photodetectors can optimise physics reach
 - e.g., convert water Cherenkov to 'optical TPC'
- LAPPDs are one such type of new photosensor
 - Superior timing and position resolution
 - Imaging sensors
- After many years, LAPPDs now exist!
- In US, first deployment in ANNIE @ Fermilab imminent
- In UK, first LAPPDs have arrived, with more on the way
 - Above ground tests taking place at universities now
 - Underground tests @ BOLEYN planned for next year
- Exciting times ahead!

Thank you for listening!