

Non-Parametric Data-Driven Background Modelling using Conditional Probabilities

Konstantinos Nikolopoulos University of Birmingham

University of Birmingham, Particle Physics Seminar January 26, 2022, Birmingham, UK

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement 714893 (ExclusiveHiggs) and under Marie Skłodowska-Curie agreement 844062 (LightBosons)

European Research Council Established by the European Commission

erc

... are all about controlling the backgrounds

... are all about controlling the backgrounds

Construct the profile likelihood ratio test statistic: λ (μ

$$\left(\mu\right) = \frac{L\left(\mu,\hat{\hat{\theta}}\right)}{L\left(\hat{\mu},\hat{\theta}\right)}$$

...are all about controlling the backgrounds Construct the **profile likelihood ratio** test statistic: $\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})}$ and test the **background-only** hypothesis $(\mu = 0)$: $\lambda(0) = \frac{L(0, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})}$

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

3

4

4

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Both ATLAS and CMS $H{\rightarrow}\gamma\gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Both ATLAS and CMS $H{\rightarrow}\gamma\gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Choose a function with N_{par} free parameters

- Too many parameters: Reduced statistical power
- Too **few** parameters: Not enough flexibility to model the background

Both ATLAS and CMS $H{\rightarrow}\gamma\gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Choose a function with N_{par} free parameters

- Too many parameters: Reduced statistical power
- Too **few** parameters: Not enough flexibility to model the background

Both ATLAS and CMS $H \rightarrow \gamma \gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Choose a function with N_{par} free parameters

- Too many parameters: Reduced statistical power
- Too **few** parameters: Not enough flexibility to model the background

Both ATLAS and CMS $H \rightarrow \gamma \gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Choose a function with N_{par} free parameters

- Too many parameters: Reduced statistical power
- Too **few** parameters: Not enough flexibility to model the background

Both ATLAS and CMS $H \rightarrow \gamma \gamma$ use parametric methods

▶ Also H→µµ, H→Zγ, H→bbγγ, etc

Choose a function with $N_{par}\,{\rm free}$ parameters

- Too many parameters: Reduced statistical power
- Too **few** parameters: Not enough flexibility to model the background

ATLAS uses the concept of "spurious signal"

Possible systematic mismodelling due to function choice leading to apparent signal

ATLAS uses the concept of "spurious signal"

Possible systematic mismodelling due to function choice leading to apparent signal Choices:

- What function to use?
- What systematic uncertainty to assign?

ATLAS uses the concept of "spurious signal"

Possible systematic mismodelling due to function choice leading to apparent signal Choices:

- What function to use?
- What systematic uncertainty to assign?

Use MC sample of background to perform S+B fits.

 \blacktriangleright Use function with lowest obtained $S_{\text{spurious}},$ and said S_{spurious} as systematic

ATLAS uses the concept of "spurious signal"

Possible systematic mismodelling due to function choice leading to apparent signal Choices:

- What function to use?
- What systematic uncertainty to assign?

Use MC sample of background to perform S+B fits.

 \blacktriangleright Use function with lowest obtained $S_{\text{spurious}},$ and said S_{spurious} as systematic

Challenges:

- Conceptual: use MC sample not deemed reliable for modelling the background
- Practical: required MC sample orders of magnitude larger than dataset of interest

$H \rightarrow \gamma \gamma$ inclusive fiducial cross section measurement uncertainties

Source	Uncertainty $(\%)$
Fit (stat.)	10
Fit (syst.)	8.3
Photon energy scale & resolution	4.0
Background modeling (spurious signal)	7.3
Correction factor	5.2
Photon isolation efficiency	4.6
Pileup	1.9
Photon ID efficiency	1.3
Trigger efficiency	0.7
Dalitz Decays	0.4
Theoretical modeling	$^{+0.3}_{-0.4}$
Diphoton vertex selection	0.1
Photon energy scale & resolution	0.1
Luminosity	2.0
Total	14

ATLAS-CONF-2018-028

Higgs boson mass measurement with H \rightarrow ZZ \rightarrow 4I and H \rightarrow γγ

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

Phys. Lett. B 784 (2018) 345

- Combine different parametric models at the likelihood level
- Treat shape options as discrete nuisance parameter
 - Use envelope of individual likelihood scans to obtain result

- Combine different parametric models at the likelihood level
- Treat shape options as discrete nuisance parameter
 - Use envelope of individual likelihood scans to obtain result

- Combine different parametric models at the likelihood level
- Treat shape options as discrete nuisance parameter
 - Use envelope of individual likelihood scans to obtain result

- Combine different parametric models at the likelihood level
- Treat shape options as discrete nuisance parameter
 - Use envelope of individual likelihood scans to obtain result

Practical and conceptual complications when models have different N_{par}

Practical and conceptual complications when models have different N_{par}

Correction: penalise functions with more parameters

Inspired by p-value and Akaike information criterion

 \blacktriangleright Parametrised as $\Lambda_{corr} = \Lambda + c N_{par}$

Bias vs coverage trade-off versus c studied case-by-case

Practical and conceptual complications when models have different N_{par}

Correction: penalise functions with more parameters

Inspired by p-value and Akaike information criterion

▶ Parametrised as
$$\Lambda_{corr} = \Lambda + cN_{par}$$

 \blacktriangleright Bias vs coverage trade-off versus c studied case-by-case

Practical and conceptual complications when models have different N_{par}

Correction: penalise functions with more parameters

Inspired by p-value and Akaike information criterion

▶ Parametrised as
$$\Lambda_{corr} = \Lambda + cN_{par}$$

 \blacktriangleright Bias vs coverage trade-off versus c studied case-by-case

Practical and conceptual complications when models have different N_{par}

Correction: penalise functions with more parameters

Inspired by p-value and Akaike information criterion

▶ Parametrised as
$$\Lambda_{corr} = \Lambda + cN_{par}$$

Bias vs coverage trade-off versus c studied case-by-case

Practical and conceptual complications when models have different N_{par}

Correction: penalise functions with more parameters

Inspired by p-value and Akaike information criterion

▶ Parametrised as
$$\Lambda_{corr} = \Lambda + cN_{par}$$

Bias vs coverage trade-off versus c studied case-by-case

JINST 10 (2015) 04, P04015

Common systematic effects across categories: All combinations of functions and nuisance parameters need to be scanned

 \rightarrow Naive implementation impractical and usually approximations used.

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

UNIVERSITY^{OF} BIRMINGHAM

Higgs-fermion interactions

- Higgs interactions to vector bosons: defined by symmetry breaking
- **Higgs interactions to fermions:** ad-hoc hierarchical Yukawa couplings ~ mf

Higgs-fermion interactions

- Higgs interactions to vector bosons: defined by symmetry breaking
 Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings mf
- Mass [GeV] $g_{Hf\bar{f}}$ $g_{hVV} = \frac{2m_V^2}{2m_V^2}$ $g_{hf\bar{f}} = \frac{m_f}{q_f}$ t-quark 0² b-quark HYukawa couplings not imposed by fundamental principle c-quark Modified Higgs-fermion couplings in BSM scenarios Probing fermion mass generation scale \rightarrow independent task s-quark Standard Model successful 10⁻² d-quark u-quark but matter particle mass 10⁻³ electron hierarchy unexplained! 10 $\frac{m_e}{m} \approx 3 \times 10^{-6}$ m_t

K. Nikolopoulos / 7 May 2021 / Innovative approaches to search for light Dark Matter

Extended Higgs sectors

- The Standard Model Higgs sector is an SU(2) doublet of complex scalar fields: this is the most economic way to obtain spontaneous symmetry breaking
- Extended Higgs sectors are possible, and can potentially provide answers to a number of open questions
- The ρ parameter puts tight constraints on model viability
 - ▶ For SM p=1 (with small corrections)
 - Constraints naturally fulfilled for appropriate configurations of scalar singlets and doublets

 $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00039 \pm 0.00019$

Extended Higgs sectors

- The Standard Model Higgs sector is an SU(2) doublet of complex scalar fields: this is the most economic way to obtain spontaneous symmetry breaking
- Extended Higgs sectors are possible, and can potentially provide answers to a number of open questions
- The ρ parameter puts tight constraints on model viability
 - ▶ For SM p=1 (with small corrections)
 - Constraints naturally fulfilled for appropriate configurations of scalar singlets and doublets

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00039 \pm 0.00019$$

- A number of possibilities with **rich phenomenology**:
 - Higgs double with one or more scalar singlets,
 - ▶ Two Higgs Doublets (2HDM),
 - 2HDM with additional scalar singlet (2HDM+S)
- Particularly interesting: additional scalar lighter than observed Higgs boson.
 - ▶ $h \rightarrow aa$
 - ▶ $h \rightarrow Za$

K. Nikolopoulos / 7 May 2021 / Innovative approaches to search for light Dark Matter

Searches for new physics

PRD 90 (2014) 7, 075004

These analyses share the challenge that the respective backgrounds are not straightforward to model with simulations.

K. Nikolopoulos / 7 May 2021 / Innovative approaches to search for light Dark Matter

Beyond Parametric Methods

Parametric methods have several advantages but also important issues In the following: aim to develop fully data-driven non-parametric background models

Beyond Parametric Methods

Parametric methods have several advantages but also important issues In the following: aim to develop fully data-driven non-parametric background models

Non-Parametric Data-Driven Background Modelling using Conditional Probabilities

A. Chisholm, T. Neep, K. Nikolopoulos, R. Owen,¹ E. Reynolds² and J. Silva

School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom E-mail: andrew.chisholm@cern.ch, tom.neep@cern.ch, konstantinos.nikolopoulos@cern.ch, rhys.owen@cern.ch, elliot.reynolds@cern.ch, julia.manuela.silva@cern.ch arXiv:2112.00650

Beyond Parametric Methods

Parametric methods have several advantages but also important issues In the following: aim to develop fully data-driven non-parametric background models

Non-Parametric Data-Driven Background Modelling using Conditional Probabilities

A. Chisholm, T. Neep, K. Nikolopoulos, R. Owen,¹ E. Reynolds² and J. Silva

School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom E-mail: andrew.chisholm@cern.ch, tom.neep@cern.ch, konstantinos.nikolopoulos@cern.ch, rhys.owen@cern.ch, elliot.reynolds@cern.ch, julia.manuela.silva@cern.ch arXiv:2112.00650

Methods motivated by specific analyses, but with wide applicability

Complete Phase-space

Complete Phase-space

$h/Z \rightarrow \phi \gamma / \rho \gamma$

h/Z→φγ/ργ

- Pair of collimated high-pT isolated tracks recoils against high-pT isolated photon
- Meson decays:
 - **♦ φ→K+K**-, BR=49%
 - **⊳ ρ→π⁺π⁻**, BR~100%
- Small opening angles between decay products
 - ▶ Particularly for $\phi \rightarrow K^+K^-$
 - Tracking in dense environments

Small angular separation

$h/Z \rightarrow \phi \gamma / \rho \gamma$

- Pair of collimated high-pT isolated tracks recoils against high-pT isolated photon
- Meson decays:

= 1082mm

r = 554mm

r = 514mm

= 443mm

r = 371mm

r = 299mm

r = 122.5mm

TRT

- **φ→K+K**-, BR=49%
- **⊳ ρ→π⁺π**, BR~100%

Small opening angles between decay products

- ▶ Particularly for $\phi \rightarrow K^+K^-$
- Tracking in dense environments

UNIVERSITY^{OF} BIRMINGHAM

17

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Heconstruction Ethiciency

TRT

SCT

Pixels

IBL

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6⊑ 0 0

TLAS Simulation

 $\tau \rightarrow \nu_{-} 3\pi^{\pm}$

 $B^0 \rightarrow X$

 $\tau \rightarrow v_{z}5X^{\pm}$

200

400

Event Selection

Event Selection

Event Selection

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

18

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

BIRMINGHAM 18

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analyses already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analyses already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

Example application on y+jet MC sample

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analyses already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

Example application on y+jet MC sample

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

arXiv:2112.00650

19

UNIVERSITYOF

BIRMINGHAM

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analyses already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

Example application on y+jet MC sample

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

arXiv:2112.00650

19

UNIVERSITYOF

BIRMINGHAM

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analyses already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

Example application on y+jet MC sample

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

BIRMINGHAM

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

21

Non-parametric data-driven background model based on Ancestral Sampling

- Obtain loose sample of candidates
- Model kinematic and isolation distributions
 - Conditional PDFs modelled using histograms
- Generate "pseudo"-background events and apply event selection

Used in several analysis already!

[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

22

Background Validation

Background Validation

$h/Z \rightarrow \phi \gamma / \rho \gamma$: Results

JHEP 1807 (2018) 127

Model Robustness

Model describes main features of background

- Robust under signal contamination
- Resonant backgrounds need to be considered separately

Model Robustness

Model describes main features of background

- Robust under signal contamination
- Resonant backgrounds need to be considered separately

arXiv:2112.00650

Model Robustness

Model describes main features of background

- Robust under signal contamination
- Resonant backgrounds need to be considered separately

$h/Z \rightarrow Q\gamma$: Resonant Backgrounds

Model describes main features of background

ATLAS

Data

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Region : VR1 ψ (nS) γ

Background model Z FSR

Model uncertainty

Events / 2.50 GeV

140

120

100

80

Resonant backgrounds need to be considered separately

180

160

140

Events 120 100

50 GeV

N

ATLAS

Data

Z FSR

Higgs decays to light hadronically decaying scalars $\tan \beta = 0.5$, TYPE II

- Experimental focus mostly on:
 - ▶ h→aa
 - ▶ a→down-type fermions
- **New search:** $h \rightarrow Za$ with $a \rightarrow hadrons$
- Overwhelming Z + jets background
- ▶ a→hadrons reconstruction using sub-structure techniques

PRL 125 (2020) 22, 221802

▶ h→aa

- ▶ a→down-type fermions
- **New search:** $h \rightarrow Za$ with $a \rightarrow hadrons$
 - Overwhelming Z + jets background
 - a→hadrons reconstruction using sub-structure techniques

PRL 125 (2020) 22, 221802

$h \rightarrow Za \rightarrow II + jet$

Observed: 82908

Expressed in $B(H \rightarrow Za) \times B(a \rightarrow hadrons)$ limits start from BR<31%

Expressed in $B(H \rightarrow Za) \times B(a \rightarrow hadrons)$ limits start from BR<31%

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

UNIVERSITY^{OF} BIRMINGHAM

29

Background estimation: MC-corrected ABCD method using $m_{\ell\ell j}$ and MLP discriminant Accounts for 13% correlation between $m_{\ell\ell j}$ and MLP discriminant

a mass	0.5 GeV	1.5 GeV	2.5 GeV
Total Uncertainty	8.3	10.7	20.3
Total Statistical Uncertainty	0.6	0.8	1.6
Total Systematic Uncertainty	8.2	10.7	20.2
Signal Systematic Uncertainties			
Jet Energy Scale	1.3	1.5	1.5
Parton Shower	1.4	1.4	1.4
Luminosity, Pileup, Trigger, Leptons, & JVT	0.2	0.3	0.5
MC Statistics	0.2	0.2	0.6
Renormalization Scale	0.1	< 0.1	0.2
Acceptance	0.1	< 0.1	0.2
Background Systematic Uncertainties			
MC Statistics	6.4	8.4	15.8
Parton Shower and ME	3.9	5.1	9.6
Renormalization Scale	3.4	4.4	8.3

Background estimation: MC-corrected ABCD method using $m_{\ell\ell j}$ and MLP discriminant Accounts for 13% correlation between $m_{\ell\ell j}$ and MLP discriminant

Suppressing MC statistical/modelling uncertainties would improve limit from 31% to 7.5%!

To improve analysis sensitivity \rightarrow improve background model

Increase sample size

Improve Generator-level modelling uncertainties

To improve analysis sensitivity \rightarrow improve background model

Increase sample size

Improve Generator-level modelling uncertainties

Ancestral sampling procedure presented earlier is impractical

Culprit: background discrimination uses multivariate techniques on variables

To improve analysis sensitivity → improve background model

Increase sample size

Improve Generator-level modelling uncertainties

Ancestral sampling procedure presented earlier is impractical

Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

To improve analysis sensitivity → improve background model

Increase sample size

Improve Generator-level modelling uncertainties

Ancestral sampling procedure presented earlier is impractical

Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

To improve analysis sensitivity → improve background model

Increase sample size

Improve Generator-level modelling uncertainties

Ancestral sampling procedure presented earlier is impractical

Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

To improve analysis sensitivity → improve background model

- Increase sample size
- Improve Generator-level modelling uncertainties
- Ancestral sampling procedure presented earlier is impractical
- Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

To improve analysis sensitivity → improve background model

- Increase sample size
- Improve Generator-level modelling uncertainties
- Ancestral sampling procedure presented earlier is impractical
- Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

Novelty: directly use data in superset of signal region for model generation
Resolves concerns about modelling uncertainties

conditioned-GAN

Complication: dataset used for model generation may be contaminated by signal ▶ Blind the Signal Region while training the GAN

conditioned-GAN

Complication: dataset used for model generation may be contaminated by signal

Blind the Signal Region while training the GAN

conditioned-GAN (cGAN): generator depends on **conditioning variable** → model can be interpolated

conditioned-GAN

Complication: dataset used for model generation may be contaminated by signal

Blind the Signal Region while training the GAN

conditioned-GAN (cGAN): generator depends on **conditioning variable** → model can be interpolated

Generator and discriminator:

- ▶ 5 layers × 256 hidden nodes with leaky ReLU activation function
- Binary cross entropy loss function and L2 regularisation

cGAN: Modelling of variables

Trained 100 cGANs with random hyper-parameters \blacktriangleright Ensemble of top 5 cGANs, based on χ^2 , retained

cGAN: Modelling of variables

cGAN: Modelling of variables

cGAN: Ensemble and Shape Variations

Shape variations:

Perform Principal Component Analysis on differences of individual cGANs to ensamble

cGAN: Ensemble and Shape Variations

Shape variations:

Perform Principal Component Analysis on differences of individual cGANs to ensamble

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

37

cGAN: Fitting the "data"

cGAN: Fitting the "data"

cGAN: Fitting the "data"

CATHODE

CATHODE: Classifying Anomalies Through Outer Density Estimation

- Training a conditional density estimator (Masked Autoregressive Flow) on the discriminant variables in the side-band
- Interpolating it into the signal region and sampling from it
- Train classifier: separate SR data from produced "background" sample
- Anomaly detection: Apply the trained classifier to data in SR
- In real life: the CATHODE method would need to be combined with a background estimation procedure

CATHODE

- CATHODE: Classifying Anomalies Through Outer Density Estimation
- Training a conditional density estimator (Masked Autoregressive Flow) on the discriminant variables in the side-band
- Interpolating it into the signal region and sampling from it
- ▶ Train classifier: separate SR data from produced "background" sample
- Anomaly detection: Apply the trained classifier to data in SR
- In real life: the CATHODE method would need to be combined with a background estimation procedure *Signal Region*

arXiv:2109.00546

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

CATHODE

- CATHODE: Classifying Anomalies Through Outer Density Estimation
- ▶ Training a conditional density estimator (Masked Autoregressive Flow) on the discriminant variables in the side-band
- Interpolating it into the signal region and sampling from it
- ▶ Train classifier: separate SR data from produced "background" sample
- Anomaly detection: Apply the trained classifier to data in SR
- In real life: the CATHODE method would need to be combined with a background estimation procedure Signal Region

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

arXiv:2109.00546

Summary

Background modelling crucial in searches for new physics and precision measurements

- Variety of methods has been developed
- Many rely on availability of large, reliable, simulated data samples
- Parametric methods suffer "spurious signal" type of effects

Developed non-parametric, conditional probability-based, methods for data-driven modelling:

- Histogram-based ancestral sampling method
- Machine learning technique using conditioned-Generative Adversarial Network

Presented methods applicable to any analysis!

This project has received funding from the European Research Council (ERC) funder the European Union's Horizon 2020 research and innovation programme under grant agreement 714893 (ExclusiveHiggs) and under Marie Skłodowska-Curie agreement 844062 (LightBosons)

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

