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Phys. Lett. B716 (2012) 1

Phys. Lett. B716 (2012) 1

di-photon, photon+jet, jet+jet

Trying to maximise data-driven 
input, e.g. signal side-bands
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ATLAS uses the concept of “spurious signal”
 Possible systematic mismodelling due to function choice leading to apparent signal

Challenges:
 Conceptual: use MC sample not deemed 
reliable for modelling the background
 Practical: required MC sample orders of 
magnitude larger than dataset of interest

Choices:
 What function to use?
 What systematic uncertainty to assign?

Use MC sample of background to perform S+B fits. 
 Use function with lowest obtained Sspurious, and said Sspurious as systematic

Spurious signal

B-only fit

S+B fit
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ATLAS-CONF-2018-028

H→γγ inclusive fiducial cross section measurement uncertainties

Phys. Lett. B 784 (2018) 345

Higgs boson mass measurement with H→ZZ→4l and H→γγ
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Practical and conceptual complications when models have different Npar

Common systematic effects across categories: All combinations of functions and nuisance 
parameters need to be scanned  
→Naive implementation impractical and usually approximations used.

Correction: penalise functions with more parameters 
Inspired by p-value and Akaike information criterion
Parametrised as 
Bias vs coverage trade-off versus  studied case-by-case

Λcorr = Λ + cNpar
c
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• v is Higgs field vacuum expectation value

• Loops (e.g. �, gluon) sensitive to BSM physics
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 Higgs interactions to vector bosons: defined by symmetry breaking
 Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings∝mf



 Yukawa couplings not imposed by fundamental principle
 Modified Higgs-fermion couplings in BSM scenarios
 Probing fermion mass generation scale→independent task

me

mt
⇡ 3⇥ 10�6

Standard Model successful  
but matter particle mass 
hierarchy unexplained!
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 The Standard Model Higgs sector is an SU(2)L doublet of complex scalar fields: 
this is the most economic way to obtain spontaneous symmetry breaking
 Extended Higgs sectors are possible, and can potentially provide answers to a 
number of open questions
 The ρ parameter puts tight constraints on model viability 

 For SM ρ=1 (with small corrections)
 Constraints naturally fulfilled for appropriate configurations of scalar singlets and 
doublets

ρ =
M2

W

M2
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= 1.00039 ± 0.00019
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 The Standard Model Higgs sector is an SU(2)L doublet of complex scalar fields: 
this is the most economic way to obtain spontaneous symmetry breaking
 Extended Higgs sectors are possible, and can potentially provide answers to a 
number of open questions
 The ρ parameter puts tight constraints on model viability 

 For SM ρ=1 (with small corrections)
 Constraints naturally fulfilled for appropriate configurations of scalar singlets and 
doublets

ρ =
M2

W

M2
Z cos2 θW

= 1.00039 ± 0.00019

 A number of possibilities with rich phenomenology: 
 Higgs double with one or more scalar singlets, 
Two Higgs Doublets (2HDM), 
 2HDM with additional scalar singlet (2HDM+S)

 Particularly interesting: additional scalar lighter than observed Higgs boson. 
 
 
h → aa
h → Za
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Aims and Motivation

Aims

Use full ATLAS Run II dataset (139 fb�1)
to perform first search for
h125 ! Z(`+`�)a/Q(had), ` = e or µ

Interpret resonance as J/ or ⌘c (Q), or a

(BSM) with ma <4 GeV

Charmonium Motivation

h125

Jet

`+

`�

a

Z

Higgs boson decay to Z + light resonances unconstrained

Potential constraints on charm Yukawa coupling

BSM Motivation

Fills both of the aforementioned gaps in the search
programme

Elliot Reynolds Higgs Decays To Light Scalars 11/28

Higgs decays to light hadronically decaying scalars

PRD 90 (2014) 7, 075004

FIG. 1: The Feynman diagrams for the direct amplitude for H → V + γ at order α0
s. The shaded

blob represents the quarkonium wave function. The momenta that are adjacent to the heavy-quark

lines are defined in the text.

FIG. 2: The Feynman diagram for the indirect amplitude for H → V + γ. The hatched circle

represents top-quark or W -boson loops, and the shaded blob represents the quarkonium wave

function.

• In the direct process, the Higgs boson decays into a heavy quark-antiquark (QQ̄) pair,

one of which radiates a photon before forming a quarkonium with the other element

of the pair.

• In the indirect process, the Higgs boson decays through a top-quark loop or a vector-

boson loop to a γ and a γ∗ (virtual photon). The γ∗ then decays into a vector quarko-

nium.

The Feynman diagrams for the direct and indirect processes are shown in Figs. 1 and 2,

respectively. It is the quantum interference between these two processes that provides phase

3

s s
_

𝞿

BR(h ! � �) = (2.31± 0.03f� ± 0.11h!��) · 10�6

Exclusive Higgs decays

These analyses share the challenge that the respective backgrounds are not 
straightforward to model with simulations.
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Beyond Parametric Methods

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Methods motivated by specific analyses, but with wide applicability

Parametric methods have several advantages but also important issues 
In the following: aim to develop fully data-driven non-parametric background models

arXiv:2112.00650
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FIG. 1: The Feynman diagrams for the direct amplitude for H → V + γ at order α0
s. The shaded

blob represents the quarkonium wave function. The momenta that are adjacent to the heavy-quark

lines are defined in the text.

FIG. 2: The Feynman diagram for the indirect amplitude for H → V + γ. The hatched circle

represents top-quark or W -boson loops, and the shaded blob represents the quarkonium wave

function.

• In the direct process, the Higgs boson decays into a heavy quark-antiquark (QQ̄) pair,

one of which radiates a photon before forming a quarkonium with the other element

of the pair.

• In the indirect process, the Higgs boson decays through a top-quark loop or a vector-

boson loop to a γ and a γ∗ (virtual photon). The γ∗ then decays into a vector quarko-

nium.

The Feynman diagrams for the direct and indirect processes are shown in Figs. 1 and 2,

respectively. It is the quantum interference between these two processes that provides phase

3

s s
_

𝞿

BR(h ! � �) = (2.31± 0.03f� ± 0.11h!��) · 10�6

Exclusive Higgs decays



 arXiv:1704.07983
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Phys. Rev. Lett. 117, 111802

Z→µµ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown

photon

meson decay 
products

Higgs 
Boson

Small angular separation 
of decay products

 Exclusive decays → distinct experimental signature
 Pair of collimated high-pT isolated tracks  
recoils against high-pT isolated photon

 Meson decays:
 φ→Κ+Κ-, BR=49%
 ρ→π+π-, BR~100%

 Small opening angles between decay products
 Particularly for φ→Κ+Κ- 
 Tracking in dense environments
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EPJC 77 (2017) 10, 673

PRL 117, 111802

 Exclusive decays → distinct experimental signature
 Pair of collimated high-pT isolated tracks  
recoils against high-pT isolated photon

 Meson decays:
 φ→Κ+Κ-, BR=49%
 ρ→π+π-, BR~100%

 Small opening angles between decay products
 Particularly for φ→Κ+Κ- 
 Tracking in dense environments
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PT
γ > 35 GeV

JHEP 1807 (2018) 127
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decay 
products

Higgs

“Tight” identification criteria 
Isolated (calorimeter- and track-based)
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JHEP 1807 (2018) 127
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±
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 track-based isolation



H/Z æ „“: Selection
Photon Selection:

“Tight” “ ID and p
“
T > 35 GeV

|÷“ | < 2.47, excluding 1.37 < |÷“ | < 1.52
*“FixedCutTight” photon isolation
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„ æ K
+

K
≠ Selection

Tracking CP “Loose” working point
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*Di-track system transverse momentum
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K+K≠“ .

* removed/loosened in background Generation region (GR).
Validation regions defined where each requirement applied independently: pT validation region

(VR1); “ Isolation Validation Region (VR2); Di-Track Isolation Validation Region (VR3)

R. Owen (University of Birmingham) H/Z æ „/fl “ 16th July 2017 4 / 22
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photon

meson 
decay 
products

Higgs

Δϕ (M, γ) > π/2

“Tight” identification criteria 
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PT
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JHEP 1807 (2018) 127
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photon

meson 
decay 
products

Higgs

Δϕ (M, γ) > π/2

“Tight” identification criteria 
Isolated (calorimeter- and track-based)

PT
γ > 35 GeV

JHEP 1807 (2018) 127

 “Inclusive” backgrounds 
 γ+jet, di-jet with jet “seen” as γ

JHEP 1807 (2018) 127

mφ±8 MeV or mρ±140 MeV

PT > 20 GeV

PT > 15 GeV
±

∓

 track-based isolation
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Non-parametric data-driven background model based on Ancestral Sampling 
 Obtain loose sample of candidates 
 Model kinematic and isolation distributions 

 Conditional PDFs modelled using histograms 
 Generate “pseudo”-background events and apply event selection 

 Used in several analyses already!  
[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]
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Non-parametric data-driven background model based on Ancestral Sampling 
 Obtain loose sample of candidates 
 Model kinematic and isolation distributions 

 Conditional PDFs modelled using histograms 
 Generate “pseudo”-background events and apply event selection 
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Example application on γ+jet MC sample

arXiv:2112.00650



64 19 22 -16 13 100

45 -7 -3 100 13

46 -8 100 -3 -16

21 -4 100 -8 -7 22

11 100 -4 19

100 11 21 46 45 64

)γ,φm(  Isolationφ )γ,φ(Φ∆ )γ,φ(η∆ )φ(
T

p )γ(
T

p

)γ(
T

p

)φ(
T

p

)γ,φ(η∆

)γ,φ(Φ∆

 Isolationφ

)γ,φm(

100−

80−

60−

40−

20−

0

20

40

60

80

100

C
o
rr

e
la

tio
n
 (

%
)

γ+jet MC

19

Background Model

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Non-parametric data-driven background model based on Ancestral Sampling 
 Obtain loose sample of candidates 
 Model kinematic and isolation distributions 
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 Generate “pseudo”-background events and apply event selection 
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Non-parametric data-driven background model based on Ancestral Sampling 
 Obtain loose sample of candidates 
 Model kinematic and isolation distributions 

 Conditional PDFs modelled using histograms 
 Generate “pseudo”-background events and apply event selection 

 Used in several analyses already!  
[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]
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Example application on γ+jet MC sample
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Example application on γ+jet MC sample arXiv:2112.00650
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Observed after unblinding

Shape variations 
 Modifying sampling distributions 
 Overall transformations of signal 
shape
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Non-parametric data-driven background model based on Ancestral Sampling 
 Obtain loose sample of candidates 
 Model kinematic and isolation distributions 

 Conditional PDFs modelled using histograms 
 Generate “pseudo”-background events and apply event selection 

 Used in several analysis already!  
[Phys. Rev. Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. B 786 (2018) 134]

JHEP 1807 (2018) 127

Observed after unblinding
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JHEP 1807 (2018) 127 JHEP 1807 (2018) 127
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h/Z→φγ/ργ: Results
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Final discriminant: mΚΚγ and mππγ  
No significant signal observed 

JHEP 1807 (2018) 127

h/Z→φγ h/Z→ργ
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 Model describes main features of background 
 Robust under signal contamination 
 Resonant backgrounds need to be considered separately
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 Model describes main features of background 
 Robust under signal contamination 
 Resonant backgrounds need to be considered separately
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h/Z→Qγ: Resonant Backgrounds
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arXiv:1807.00802

 Model describes main features of background 
 Robust under signal contamination 
 Resonant backgrounds need to be considered separately
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Aims and Motivation

Aims

Use full ATLAS Run II dataset (139 fb�1)
to perform first search for
h125 ! Z(`+`�)a/Q(had), ` = e or µ

Interpret resonance as J/ or ⌘c (Q), or a

(BSM) with ma <4 GeV

Charmonium Motivation

h125

Jet

`+

`�

a

Z

Higgs boson decay to Z + light resonances unconstrained

Potential constraints on charm Yukawa coupling

BSM Motivation

Fills both of the aforementioned gaps in the search
programme

Elliot Reynolds Higgs Decays To Light Scalars 11/28

Higgs decays to light hadronically decaying scalars

PRD 90 (2014) 7, 075004
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 Experimental focus mostly on: 
 h→aa 
 a→down-type fermions 

 New search: h→Za with a→hadrons 
 Overwhelming Z + jets background 
 a→hadrons reconstruction using sub-structure techniques

PRL 125 (2020) 22, 221802



Aims and Motivation

Aims

Use full ATLAS Run II dataset (139 fb�1)
to perform first search for
h125 ! Z(`+`�)a/Q(had), ` = e or µ

Interpret resonance as J/ or ⌘c (Q), or a

(BSM) with ma <4 GeV

Charmonium Motivation

h125

Jet

`+

`�

a

Z

Higgs boson decay to Z + light resonances unconstrained

Potential constraints on charm Yukawa coupling

BSM Motivation

Fills both of the aforementioned gaps in the search
programme

Elliot Reynolds Higgs Decays To Light Scalars 11/28

28

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

 Experimental focus mostly on: 
 h→aa 
 a→down-type fermions 

 New search: h→Za with a→hadrons 
 Overwhelming Z + jets background 
 a→hadrons reconstruction using sub-structure techniques

PRD 79 (2009) 074017

JHEP 12 (2016) 153

JHEP 12 (2016) 153

JHEP 03 (2011) 015

PRL 125 (2020) 22, 221802



29

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

PRL 125 (2020) 22, 221802



29

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

PRL 125 (2020) 22, 221802

Expected Bkg: 82400±3700  
Observed: 82908
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PRL 125 (2020) 22, 221802

Expected Bkg: 82400±3700  
Observed: 82908

Expressed in  limits start from BR<31%B(H → Za) × B(a → hadrons)
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PRL 125 (2020) 22, 221802

Expected Bkg: 82400±3700  
Observed: 82908

EPJC 76 (2016) 9, 501

2HDM Type I

3000 fb-1

Expressed in  limits start from BR<31%B(H → Za) × B(a → hadrons)
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Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj



30

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj

mℓℓj

M
LP

 D
is

cr
im

in
an

t

SR

A

B

C

D



30

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj

mℓℓj

M
LP

 D
is

cr
im

in
an

t

SR

A

B

C

D



30

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj

mℓℓj

M
LP

 D
is

cr
im

in
an

t

SR

A

B

C

D



31

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj



31

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj



31

h→Za→ll+jet

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj



31

h→Za→ll+jet
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Background estimation: MC-corrected ABCD method using  and MLP discriminant
Accounts for 13% correlation between  and MLP discriminant

mℓℓj
mℓℓj

Suppressing MC statistical/modelling uncertainties would improve limit from 31% to 7.5%!
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To improve analysis sensitivity → improve background model
Increase sample size
Improve Generator-level modelling uncertainties

arXiv:1406.2661

Novelty: directly use data in superset of signal region for model generation
Resolves concerns about modelling uncertainties

Ancestral sampling procedure presented earlier is impractical
Culprit: background discrimination uses multivariate techniques on variables

Solution to sample size: Use a Generative Adversarial Network to generate the background sample

StyleGAN2 (Dec 2019) - Karras et al. and Nvidia
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conditioned-GAN
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Complication: dataset used for model generation may be contaminated by signal
Blind the Signal Region while training the GAN

conditioned-GAN (cGAN): generator depends on conditioning variable → model can be interpolated

Generator and discriminator:
5 layers × 256 hidden nodes with leaky ReLU activation function
Binary cross entropy loss function and L2 regularisation
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cGAN: Modelling of variables
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Trained 100 cGANs with random hyper-parameters
Ensemble of top 5 cGANs, based on χ2, retained
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cGAN: Modelling of variables
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110 GeV < mℓℓj < 123 GeV 123 GeV < mℓℓj < 135 GeV

135 GeV < mℓℓj < 145 GeV 145 GeV < mℓℓj < 155 GeV
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Ratio to ensemble

Shape variations:
 Perform Principal Component Analysis on differences of individual cGANs to ensamble
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cGAN: Ensemble and Shape Variations
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Ratio to ensemble

PCA components account for: 89%, 9.6%, 0.55%, and 0.40% of variance

PCA components

Shape variations:
 Perform Principal Component Analysis on differences of individual cGANs to ensamble
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Validation Region
Background strength = 1.000±0.006
Shape Variation 1 = -1.83±0.24  
Shape Variation 2 = -1.50±0.50

Background-only fit
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cGAN: Fitting the “data”
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Validation Region
Background strength = 1.000±0.006
Shape Variation 1 = -1.83±0.24  
Shape Variation 2 = -1.50±0.50

Background-only fit

Signal Region
Background strength = 1.000±0.006
Shape Variation 1 = -0.43±0.25  
Shape Variation 2 =  0.01±0.49

Background-only fit

Signal Region
Signal strength = -0.002±0.006  
Background strength = 1.001±0.008
Shape Variation 1 = -0.45±0.26  
Shape Variation 2 =  -0.04±0.51

Signal+Background fit

Signal+Background fit behaves as expected
Obtained signal compatible with 0
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 CATHODE: Classifying Anomalies Through Outer Density Estimation
Training a conditional density estimator (Masked Autoregressive Flow) 
on the discriminant variables in the side-band
Interpolating it into the signal region and sampling from it
Train classifier: separate SR data from produced “background” sample
Anomaly detection: Apply the trained classifier to data in SR

 In real life: the CATHODE method would need to be combined with a 
background estimation procedure

arXiv:2109.00546
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Summary

K. Nikolopoulos / 26 January 2022 / Non-Parametric Data-Driven Background Modelling

Background modelling crucial in searches for new physics and precision measurements
 Variety of methods has been developed
 Many rely on availability of large, reliable, simulated data samples
 Parametric methods suffer “spurious signal” type of effects

Developed non-parametric, conditional probability-based, methods for data-driven modelling:
 Histogram-based ancestral sampling method
 Machine learning technique using conditioned-Generative Adversarial Network

Presented methods applicable to any analysis!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovaAon 
programme under grant agreement 714893 (ExclusiveHiggs) and under Marie Skłodowska-Curie agreement 844062 (LightBosons)
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