Highlights from the ALICE experiment

Particle Physics Seminar, University of Birmingham Dec 8, 2021

Klaus Reygers

Physikalisches Institut Heidelberg University

Exploring QCD with ALICE (1) Quark-gluon plasma physics: QCD thermodynamics

QCD matter properties enter in hydro modeling of the QGP phase

Exploring QCD with ALICE (2)

Some of the driving questions

Precise determination of QGP properties

Equation-of-state, transport coefficients, microscopic structure at different momentum scales

Heavy quarks as QGP probes Do heavy quarks thermalize, too? Do they go with the flow? How much energy do they lose?

QGP-like effects in pp and p-A QGP in small systems? Reassessment of some QGP signatures in Pb-Pb?

Highlights from the ALICE Experiment | K. Reygers

Exploring QCD with ALICE (3) Beyond QGP physics

. . .

QCD in pp / p-Pb

Charm hadronization Jet fragmentation

Properties of light nuclei and hypernuclei

 $E_{Radiate}$

Fully reclustered jet

Dead-cone effect Gluon emissions are suppressed in a cone with $\theta_{dc} = m_0/E_{Radiator}$

pn

charm quark

 $^{3}_{\Lambda}H$ structure

 $\sigma_{\rm inel}({}^{\rm 3}{\rm He})$ for indirect dark matter search

Photon-nucleus scattering

Nuclear force between (unstable) hadrons

Run 3 & 4: ALICE 2

ALICE 2 Faster readout, improved tracking, and very good PID

ALICE 2 (Run 3 & 4)

LS2 upgrade

- new TPC detectors (GEMs)
- new silicon trackers (ITS & MFT)
- **new** fast interaction trigger (FIT)
- new online/offline system (O2)
- new readout for all detectors

ALICE 2 Continuous readout: 50 times higher readout rate for min. bias Pb-Pb

Run 1 & 2

- 8 kHz Pb-Pb interaction rate
- 1 kHz Pb-Pb readout rate
- total of 1 nb⁻¹ Pb-Pb collisions

Run 3 & 4: continuous readout

- readout rate 50 kHz Pb-Pb (1 MHz pp)
- expect 13 nb⁻¹ Pb-Pb collisions $- \times 50$ min. bias Pb-Pb Run 1 & 2
- ▶ 0.6 pb⁻¹ p-Pb collisions
 - $\times 200$ min. bias p-Pb Run 2
- ► 200 pb⁻¹ pp top energy
 - with software selection for rare events
- small O-O sample (1 nb⁻¹)

ALICE 2 Visualization of a 2 ms time frame with Pb–Pb collisions at 50 kHz

Time frame of ~10 ms with ~500 Pb-Pb collisions reconstructed in one shot

95% of reconstruction on GPUs

ALICE 2 TPC High rates with GEMs (replacing MWPCs)

Continuous readout at 50 kHz Pb-Pb interaction rate possible due to GEMs

Fully installed in August 2020

ALICE 2 New technology for tracking detectors: CMOS MAPS (ALPIDE)

FIT: new trigger system

talks Jian Liu, Solangel Rojas Torres

ITS2: new inner tracking system

- Improved pointing resolution (\times 3)
- Inner barrel: $0.35\% X_0$ per layer
- Smaller beam pipe, 1st layer closer (22 mm)

MFT: muon forward tracker

- New tracker based on ALPIDE
- Now tracking before the absorber: Improved muon pointing

ALPIDE

Highlights from the ALICE experiment | K. Reygers

inner barrel (bottom half)

MFT

outer barrel

Selection (1997)

ITS2: 10 m², 12.5×10⁹ pixels, fully installed in May 2021

71

PIXEL PERFECT

A CERN for climate change Medical technologies

LHC pilot run (pp @ 900 GeV, 19-31 October 2021) First events with ALICE 2

Highlights from the ALICE experiment | K. Reygers

ALICE upgrades in LS3 & LS4

talks Filip Krizek, Gian Michele Innocenti

Highlights from the ALICE Experiment | K. Reygers

ITS3

Wafer-scale, ultra-thin, bent MAPS: lowest possible material budget

"sensors maintain their excellent performance after bending", ALICE ITS team, arXiv:2105.13000

Significant improvement in the measurement of low momentum charm and beauty hadrons and low-mass dielectrons

FoCal

Shadowing/saturation of small-x gluons in Pb with forward photons

FoCal-E: high-granularity Si-W sampling sandwich calorimeter for photons and π^0

FoCal-H: conventional sampling calorimeter for photon isolation

In addition: jets, jet quenching, J/ψ , Y, long-range correlations in pp, p-Pb, ...

Physics highlights Pb-Pb: Exploring the QGP

Energy loss and hadronization of c and b quarks in Pb-Pb (1) Expected effects in the presence of a QGP

c and b quarks from initial hard scatterings (prior to QGP formation, $m_Q \gg T_{QGP}$ no thermal production)

Low p_T ($p_T \lesssim 10$ GeV/c)

Collective motion like for u,d,s (?)

Mass-dependent p_T shift: $p_{\rm T,flow} = \beta_{\rm flow} \gamma_{\rm flow} m$

Hadronization via coalescence?

High p_T ($p_T \gtrsim 10$ GeV/c)

Hadronization in vacuum (like in e+e-)

parameterized by fragmentation function

Energy loss and hadronization of c and b quarks in Pb-Pb (2) Observable and techniques

Quantifying medium effects in A-A:

Comparison to simple superposition of pp collisions

b quark energy loss: Accessible via non-prompt D

 $B \rightarrow D + X$

$R_{AA}(p_T) = \frac{dN/dp_T|_{AA}}{N_{coll} \times dN/dp_T|_{pp}}$

Highlights from the ALICE experiment | K. Reygers

Energy loss and hadronization of c and b quarks in Pb-Pb (3) Prompt vs non-prompt D⁰ R_{AA} consistent with $\Delta E_{\rm b} < \Delta E_{\rm c}$

First measurement of D meson production down to zero p_T in Pb-Pb

D⁰ from B less suppressed than prompt D⁰

Consistent with $\Delta E_{\rm b} < \Delta E_{\rm c}$ (dead-cone effect)

More precise measurement with new ITS in Run 3

Energy loss and hadronization of c and b quarks in Pb-Pb (4) R_{AA} (non-prompt D_s^+) > R_{AA} (non-prompt D^0) in line with coalescence picture talk <u>Stefano Trogolo</u> () 0 0 1 4.5 4.5 4.0 3.5 3.5 4 2.5 ALICE Preliminary 0–10% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV |y| < 0.5data \bigcirc TAMU R_{AA} (non-prompt D_s^+) (non-prompt D_s) R_{AA} (non-prompt **D**⁰) 2.0 .5 1.0 0.5 open markers: pp extrapolated reference new C 5 15 20 25 10 0 *p*_{_} (GeV/*c*)

Non-prompt D_s^+ less suppressed than non-prompt D^0 at low p_T

Points to B_s^0 production via coalescence

TAMU model, He, Fries, Rapp, PLB 735 (2014) 445

Exploring the QGP with jets Groomed jet radius narrower in Pb-Pb than in pp

arXiv:2107.12984

talks James Mulligan, Laura Havener

The cores of jets are narrower in Pb-Pb compared to pp collisions

First direct experimental evidence for the modification of the angular scale of groomed jets in heavy-ion collisions

Consistent with moderate gluon shadowing of 0.65 at $x \approx 6 \times 10^{-4}$

У

Physics highlights: pp / p-Pb collisions

Direct observation of the dead-cone effect in QCD (1) Gluon emission by a heavy quark

arXiv:2106.05713

Dead-cone effect:

Gluon emission suppressed in a cone with $\theta_{dc} = m_Q / E_{radiator}$

A fundamental QCD feature (holds for all gauge quantum) field theories) Dokshitzer, Khoze, Troian, J. Phys. G17 (1991) 1602

Highlights from the ALICE experiment | K. Reygers

Direct observation of the dead-cone effect in QCD (2) Significant suppression of small-angle splittings for small E_{charm} θ (rad)

ALI-PUB-493419

Dead-cone effect results in $\Delta E_{\rm b} < \Delta E_{\rm c} < \Delta E_{\rm u.d.s}$ in the QGP

arXiv:2106.05713 talk <u>Vít Kučera</u>

Charm hadronization in pp (1):

More charm quarks in baryons in pp than in e⁺e⁻ and ep collisions

Charm quarks hadronize into baryons 40% of the time

 \sim 4 times more than in e⁺e⁻

H_{c}	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}})[\%]$
\mathbf{D}^0	$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$
\mathbf{D}^+	$17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$
D^+_s	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$
Λ_{c}^+	$20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$
Ξ_{c}^{0}	$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$

Charm hadronization in pp (2) Competing theoretical ideas

Color reconnections

String configuration that minimizes potential energy Before colour reconnection

After colour reconnection?

Christiansen, Skands, JHEP 1508 (2015) 003

Quark coalescence in phase space

hadron wave function system

Plumari et al., Eur.Phys.J.C 78 (2018) 348

- Convolve quark distributions and
- Assumes a high-density partonic

SH model + RQM

Independent statistical hadronization + extra charmbaryon states predicted by rel. quark model (RQM)

		Q = c		Q = b	
$I(J^P)$	Qd state	М	~ M ^{exp} [1]	М	$\sim M^{\exp}$ [1]
$\frac{1}{2}(\frac{1}{2}^{+})$	1 <i>S</i>	2476	$2470.88\binom{34}{80}$	5803	5790.5(2.7)
$\frac{1}{2}(\frac{1}{2}^{+})$	2S	2959	00	6266	
$\frac{1}{2}(\frac{1}{2}^{+})$	3 <i>S</i>	3323		6601	
$\frac{1}{2}(\frac{1}{2}^{+})$	4S	3632		6913	
$\frac{1}{2}(\frac{1}{2}^{+})$	5 <i>S</i>	3909		7165	
$\frac{1}{2}(\frac{1}{2}^{+})$	6S	4166		7415	
$\frac{1}{2}(\frac{1}{2}^{-})$	1P	2792	2791.8(3.3)	6120	
$\frac{1}{2}(\frac{1}{2}^{-})$	2P	3179		6496	
			•		
	(m	any	states .)	

He, Rapp, <u>PLB 795 (2019) 117</u>

 $\Lambda_{\rm c}^+(udc) \rightarrow {\rm pK}^-\pi^+$ $\rightarrow pK_s^0$

Measurement of charmed hadrons down to unprecedentedly low p_T at midrapidity

Charm quark fragmentation not universal!

Standard PYTHIA 8 below data

Fair description by

- PYTHIA 8 with CR
- Coalescence + fragmentation (Catania)
- SH mode + RQM
 - (T = 170 MeV, additional states crucial)

Charm hadronization in pp (4): Ξ_c^0/D^0 not described by models that get Λ_c^+/D^0 right!

$\Xi_{\rm c}^0(dsc) \to \Xi^- e^+ \nu_e \\ \to \Xi^- \pi^+$

PYTHIA 8 with CR (mode 2) below data, even though this model describes Λ_c^+/D^0

Coalescence model comes closest to data

Very forward energy and particle production at midrapidity Small E_{ZDC} correlates with high $dN_{ch}/d\eta|_{\eta=0}$ and high p_T particle at $\eta = 0$

Explore concept of "centrality" in pp collisions

Zero degree calorimeters: $ZN (|\eta| > 8.8)$ for neutrons ZP ($6.5 < \eta < 7.4$) for protons

Observation 1: Forward proton and neutron energy **anticorrelated** with $dN_{ch}/d\eta|_{\eta=0}$

Observation 2: Transverse multiplicity at $\eta = 0$ and forward neutron energy both saturate for $p_{\rm T}^{\rm leading} > 5 \, {\rm GeV}/c$

- Strangeness enhancement in pp (1) Setting the stage
- (Multiple-strange) baryon yields increase faster with $dN_{ch}/d\eta$ than pions
- Not reproduced by PYTHIA 8 Monash tune
- Modified strings?
- (PYTHIA 8 + ropes, string tension, color reconnection)
- "Canonical strangeness suppression" in thermal models (Grand-canonical description only correct for large enough volumes)
- Or a sign of QGP formation in pp collisions?

Strangeness enhancement in pp (2) Enhancement driven by final-state multiplicity, not by effective energy

*v*₂ of soft jet particles in p-Pb Non-zero v₂ could indicate parton energy loss in p-Pb

talk Siyu Tang Jet-particle v_2 , $p_{\tau}^{assoc} > 0.5 \text{ GeV}/c$ Jet-particle v_2 , $p_{\tau}^{assoc} > 1.0 \text{ GeV}/c$ Jet–particle v_2 , $p_{\tau}^{assoc} > 1.5 \text{ GeV}/c$ 6 p_{τ} (GeV/*c*) (trig)

Azimuthal anisotropy

 $\frac{dN}{d\phi} \sim (1 + 2v_2\cos(\phi - \phi_{\text{ref}}))$

A-A at high *p*_T: $V_2 > 0 \leftrightarrow \text{jet quenching}$ $(R_{AA} < 1)$

p-Pb at high p_T:

 $v_2 > 0 \iff$ jet quenching? (but $R_{AA} \approx 1!$)

Higher sensitivity to parton E loss in p-Pb by studying soft jet particles

Physics highlights: the LHC as a versatile particle source

Hypertriton in Pb-Pb at 5.02 TeV Hypertriton properties

Mass: $m \approx 2.991$ GeV/ c^2

Large RMS radius: about 10.3 fm

Molecular structure: $(p + n) + \Lambda$

Quantum mechanical formation time: about 100 fm/c

 ${}^{3}_{\Lambda}H$ lifetime: ALICE result consistent with free Λ lifetime

Very interesting to study hypertriton production in different systems (pp, p-Pb, Pb-Pb)

500

Hypertriton in Pb-Pb at 5.02 TeV Precision measurement of Λ separation energy B_{Λ}

$^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$

Precise measurement of B_{\wedge} and lifetime sheds light on hypertriton structure

Λ separation energy:

Supports loosely bound nature of the hypertriton

Hypertriton in Pb-Pb at 5.02 TeV Interlude: Statistical hadronization model (SHM)

3.5 Mass (GeV) Statistical hadronization model:

$$n_i = N_i/V = \frac{g_i}{2\pi} \int_0^\infty \frac{p^2 dp}{\exp(E_i - \mu_i)/T} \pm \frac{g_i}{\exp(E_i - \mu_i)/T} dp$$

Measured yields described with

$$T=(156\pm2)\,{
m MeV}$$
, $\mu_ipprox 0$

A surprise: production yields of loosely bound objects and strongly bound objects simultaneously described in the statistical hadronization approach

d, ${}^{3}_{\Lambda}$ He: "snowballs that survive in hell"

Hypertriton in pp and p-Pb $^{3}_{\Lambda}$ H/ Λ yield ratio consistent with formation through coalescence

Formation mechanism provides insight into hypertriton structure (in addition to lifetime and Λ separation energy)

Strong interaction between hadrons (1) Correlation function sensitive to interaction potential

$$C(k^*) = \int S(r) \left| \psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

Strong interaction between hadrons (2) Precise information on the as-yet-unknown p- Ω^- interaction

Critical test for lattice QCD calculations of the strong h-h interaction

A new avenue for high-precision tests of the strong interaction at the LHC:

Important input for the equation-of-state of neutron stars (which contain hyperon-rich matter)

Inelastic cross section of \overline{d} and ${}^{3}\overline{He}$ (1) Input for dark matter searches in space

Indirect dark matter search: $\chi + \chi \to b\bar{b} \to \bar{d} + X$ $\chi + \chi \to W^+ W^- \to \overline{\mathbf{d}} + X$ $\chi + \chi \rightarrow b\bar{b} \rightarrow {}^{3}\overline{\text{He}} + X$ $\chi + \chi \rightarrow W^+ W^- \rightarrow {}^3\overline{\text{He}} + X$

Small astrophysical background

Critical input: inelastic cross section

d + A inelastic cross section: PRL 125 (2020) 16, 162001

Inelastic cross section of \overline{d} and ${}^{3}\overline{He}$ (3) First-ever measurement of the interaction of antihelium with matter

Adjust inelastic cross section in GEANT 4 until reconstructed ³He/³He ratio is reproduced

Indications of deviations from GEANT 4 at low p

Run 5 and beyond: ALICE 3

ALICE 3 New ways to study the QGP

Deconfinement and hadronization

Multiple charm hadrons, quarkonia, X(3872): extremely enhanced in the QGP

Vary charm quark density through large rapidity coverage

Precision QGP tomography with $c\bar{c} \rightarrow DD$ correlations Nature of quasi-particles in the QGP Collisional vs. radiative energy loss

Observation of chiral symmetry restoration Dileptons with $m_{ee} > 1$ GeV with high precision Discover p-a₁ chiral mixing

ALICE 3 Further physics goals

Pre-QGP stage: how does the medium thermalize? \rightarrow dileptons yield and v_2 at high masses and p_T

Electrical conductivity of the QGP \rightarrow dileptons yield ultra-low masses and p_T

Onset of collective/QGP effects from small to large systems

Ultra soft photons ($p_T < 10 \text{ MeV/c}$) Low's theorem, soft photon puzzle

And more ...

ALICE 3 A new dedicated QGP physics detector for Run 5+ (> 2030)

talk Gian Michele Innocenti, expression of interest: <u>1902.01211</u>

Fast and ultra-thin detector with precise tracking and particle ID

First tracking layer very close to primary vertex

Kinematic range down to very low p_T

Large acceptance (barrel + endcap $\Delta \eta \approx 8$)

Letter of Intent by end of 2021 Public ALICE 3 workshop Oct 19/20

Summary

Charm hadronization in pp very different from e⁺e⁻

Direct observation of the dead-cone effect in pp for charm quarks

Hadron physics Hadron structure, strong hadron-hadron interaction, formation of hadrons and nuclei

ALICE 2

Run 3: installation and commissioning of major upgrades complete, verified in pilot run Run 4: upgrades on track

ALICE 3

Plans for a next-generation dedicated QGP experiment for Run 5+

New insights from c and b quarks on QGP hadronization and parton energy loss

