



# MICROBOONE AND THE MYSTERY OF THE MISSING NEUTRINOS EXTRA

Kirsty Duffy UKRI Future Leaders Fellow, University of Oxford University of Birmingham Particle Physics Group Seminar

Run 3469 Event 53223/ Oct



- Neutrinos are one of the least-well-understood particles in the Standard Model
- Neutrino oscillation is beyond the Standard Model, and opens the door to exciting new possibilites
- However, a lot remains that we don't understand (both within the 3-flavour oscillation picture and outside it)
- I present new data from the MicroBooNE experiment that sheds light on one of the existing anomalies



### MY PERSONAL BIAS

- Overview of (experimental) neutrino physics
- MiniBooNE anomaly
- MicroBooNE recent results



# NEUTRINOS: WHAT WE KNOW



- Fundamental particles in the Standard Model
- Interact via weak force
- "Paired" with charged leptons





### NEUTRINO OSCILLATION





### TWO SETS OF EIGENSTATES





### Probability to detect a neutrino of a given flavour oscillates as:

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}$$
$$\times [1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}]\sin^{2}\frac{\Delta m_{32}^{2}L}{4E}$$
$$+ (\text{solar, matter effect terms})$$





### Probability to detect a neutrino of a given flavour oscillates as:

$$\sin^2 \left( \frac{\Delta m_{ij}^2 L}{4E} \right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

### Reason #1 why neutrinos are exciting:

Neutrino oscillation

→ Neutrinos have mass

→ Physics beyond the Standard Model!







### Reason #3 why neutrinos are exciting:

There is a lot we don't know!





# How do neutrinos interact in the nuclear medium?



### NEUTRINO INTERACTIONS





### NEUTRINO INTERACTIONS





### NEUTRINO INTERACTIONS





#### **Neutrinos**

#### MiniBooNE Anomaly

#### MicroBooNE Results

Measurement of the Flux-Averaged Inclusive Charged-Current Electron Neutrino and Antineutrino Cross Section on Argon using the NuMI Beam and the MicroBooNE Detector

P. Abratenko,<sup>36</sup> M. Alrushed,<sup>15</sup> R. An,<sup>14</sup> J. Anthony,<sup>4</sup> J. Asaadi,<sup>35</sup> A. Ashkenazi,<sup>19,33</sup> S. Balasubramanian,<sup>39</sup> B. Baller,<sup>11</sup> C. Barnes,<sup>22</sup> G. Barr,<sup>24</sup> V. Basque,<sup>18</sup> L. Bathe-Peters,<sup>13</sup> O. Benevides Rodrigues,<sup>32</sup> S. Berkman,<sup>11</sup> A. Bhanderi,<sup>18</sup> A. Bhat,<sup>41</sup> M. Bishai,<sup>4</sup> A. Blake,<sup>16</sup> T. Bolton,<sup>15</sup> L. Camilleri,<sup>19</sup> D. Caratelli,<sup>11</sup> I. Caro Terrazas,<sup>9</sup> R. Castillo Fernandez<sup>11</sup> F. Cavanna,<sup>11</sup> G. Cerati,<sup>11</sup> Y. Chen,<sup>1</sup> E. Church,<sup>25</sup> D. Cianci,<sup>10</sup> J. M. Conrad,<sup>19</sup> M. Convery,<sup>29</sup> L. Cooper-Troendle,<sup>39</sup> J. I. Crespo-Anadón,<sup>33,6</sup> M. Del Tutto,<sup>11</sup> S. R. Dennis,<sup>4</sup> D. Devitt.<sup>16</sup>

R. Diurba,<sup>21</sup> L. Domine,<sup>29</sup> R. Dorrill,<sup>14</sup> K. Duffy,<sup>11</sup> J. J. Evans,<sup>18</sup> G. A. Fiorentini Aguirre,<sup>30</sup> R. S. A. P. Furmanski,<sup>21</sup> D. Garria-Gamez,<sup>12</sup> S. Gardines P. Green,<sup>18</sup> H. Greenles,<sup>11</sup> W. Gu,<sup>2</sup> R. Guenette O. Hen,<sup>29</sup> C. Hill,<sup>38</sup> G. A. Horton-Smith,<sup>15</sup>

X. Ji<sup>2</sup>, L. Jiang,<sup>37</sup> J. H. Jo,<sup>39</sup> R. A. Johnson,<sup>8</sup> 11 m and 3 has seen 11 m at

Ex. Rev. J. C (2014) 76 (2-1) land pres/101/11140(error/s 100/92-0 PR-s/242-1

Regular Article - Experimental Physics.

#### Comparison of v<sub>µ</sub>-Ar multiplicity dis MicroBooNE to GENIE model predict MicroBooNE Collaboration

C. Adams<sup>9</sup>, R. An<sup>19</sup>, J. Anthony<sup>9</sup>, J. Assad<sup>12</sup>, M. Anger<sup>1</sup>, S. F. M. Ban<sup>147</sup>, F. Hay<sup>20</sup>, A. Bind<sup>14</sup>, K. Binditchines<sup>29</sup>, M. Binde Cartile Fernander, F. Caranas, G. Caral, H. Chev.
 R. Dalle<sup>10</sup>, J. M. Conrad<sup>11</sup>, M. Carrey<sup>10</sup>, L. Caspe
 D. Dvite<sup>11</sup>, A. Dan<sup>11</sup>, S. Dytman<sup>11</sup>, B. Eberly<sup>10</sup>, A. Evel A. Padevan', S. T. Paralag<sup>11</sup>, W. Farman', A. F. Fa B. Carbiil, S. Callapinsi<sup>24</sup>, E. Crussellin<sup>24</sup>, B. Creenler A. Einchenburg<sup>21</sup>, P. Hamilton<sup>24</sup>, O. Hen<sup>24</sup>, J. Howe<sup>24</sup>, J. E.-C. Hamg<sup>21</sup>, C. Jame<sup>4</sup>, J. Jan & Yrite<sup>4</sup>, L. Jang<sup>21</sup>, J. G. Karagiogi<sup>1</sup>, W. Katcham<sup>1</sup>, B. Kirby<sup>2</sup>, M. Kirby<sup>3</sup>, R.F. S. Lacke in<sup>2</sup>, D. Lacco<sup>1</sup>, W.C. Lasio<sup>11</sup>, M. Lasibi<sup>1</sup>, B.B. C. Mariani 7, J. Marshall', D. A. Martinez Calcole 7, 5

First Measurement of Boergeslependent Indusi Cross Sections on Argon with the

K. Mustimin,<sup>10</sup> A. Nu,<sup>14</sup> J. Astimuy,<sup>1</sup> L. Archine,<sup>16</sup> J. Asta B. Biller, <sup>1</sup> C. Barras,<sup>16</sup> D. Farz,<sup>16</sup> A. Barray,<sup>16</sup> L. Barlas Free A. Bisanichi,<sup>16</sup> A. Bisani,<sup>16</sup> M. Bisani,<sup>17</sup> J. Mikani,<sup>18</sup> T. Mikani,<sup>18</sup> L. Garra Barrason,<sup>1</sup> F. Caranan,<sup>16</sup> G. Grasha,<sup>16</sup> Y. Char,<sup>10</sup> B. L. Gorgen-Hornsler,<sup>16</sup> J. J. Compo. Astomics,<sup>15</sup> M. Del Tarras, R. Dischar,<sup>16</sup> F. Farrell,<sup>17</sup> K. Delly,<sup>17</sup> N. Dyima,<sup>17</sup> B. Biray,<sup>16</sup> A. Firrendrid Acarac," B. S. Firspetch, "B. 7. Finance," R. Garris, Carris, "R. Gardins," G. Go, "R. Golgman, "A. B. Gross, "W. G. G. 7. Garcine, "P. Garcent, P. 19, G. A. Borne-Saith," A. Baulie, "R. Iso, "R. Associ." T. J. Jus,<sup>1</sup> D. Kellen<sup>1</sup> N. Kampi<sup>11</sup> N. Kanobiago<sup>1</sup> C. Haragio E.Krado,<sup>1</sup> I. Laperde<sup>10</sup> K. Li<sup>10</sup> Y. U.<sup>1</sup> K. Da<sup>11</sup> D. R. Bradge C. Mariani,<sup>21</sup> D. Varenien<sup>12</sup> J. Marvind,<sup>22</sup> D. A. Monines Chieve. C. Markan,<sup>19</sup> B. Marcine,<sup>10</sup> J. Marcinel,<sup>10</sup> D. a. Markan, Carine M. W. Machan,<sup>10</sup> T. Markan,<sup>11</sup> E. Markan,<sup>11</sup> E. Markan,<sup>11</sup> E. Markan,<sup>11</sup> E. Markan,<sup>11</sup> E. Markan,<sup>11</sup> B. Markan,<sup>11</sup> B. Markan,<sup>11</sup> J. Markan,<sup>11</sup> M. Markan,<sup>11</sup> M. Markan,<sup>11</sup> M. Markan,<sup>11</sup> M. Markan,<sup>11</sup> H. Markan,<sup>11</sup> M. Mar P. Abratenko,<sup>33</sup> B. Baller,<sup>11</sup> C. Bart

Oct 2021

8

Sti

202

5

Kirsty Duny

PHYSICAL REVIEW D 102, 112013 (2020)

rement of differential cross sections for  $\nu_{\mu}$ -Ar charged-current nteractions with protons and no pions in the final state with the MicroBooNE detector

PHYSICAL REVIEW LETTERS 125, 201803 (2020)

First Measurement of Differential Charged Current Quasiclasticlike ra-Argon Scattering Cross Sections with the MicroBooNE Detector

Abritesko," M. Alrashei, "R. An." I. Antsony," J. Asaudi," A. Ashkesazi, "S. Balasjormanian," B. Baller, C Barnes<sup>20</sup> G. Barr.<sup>21</sup> Y. Easque,<sup>11</sup> L. Bathe-Peters<sup>13</sup> O. Benevides Rochigues<sup>31</sup> S. Berkraan,<sup>11</sup> A. Bhatderi,<sup>18</sup> A. Bhat. M. Eishai<sup>2</sup> A. Blake,<sup>16</sup> T. Bolton,<sup>11</sup> L. Camillori<sup>9</sup> D. Cautolli<sup>11</sup> L. Caro Ternano,<sup>1</sup> R. Castillo Fernandor,<sup>11</sup> F. Cavansa,

### **MicroBooNE** neutrino interaction measurements

9 publications, 18 public notes link 30+ world-leading measurements in progress

World's best data set of neutrino interactions on argon  $\rightarrow$  vital input for future experiments using similar technology

| <sup>1</sup> A. Ashkemari, <sup>10</sup> M. Anger, <sup>1</sup> S. Balasubramanian, <sup>10</sup><br>J. Rut <sup>10</sup> K. Elastischeren <sup>11</sup> M. Eishail <sup>1</sup>                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| o Jerranas," R. Carr," R. Casulo Fernandez,"<br>7 E. O. Colum Z.G. R. Collin, F. J. M. Conrod H.                                                                                                         |
| 6. Del Tatta, <sup>20</sup> E. Dwitt, <sup>10</sup> A. Diaz, <sup>10</sup> K. Dufy, <sup>9</sup><br>and 1 March 126 J 1 Rep. 7<br>5 5 4 4 February 7                                                     |
| Parmaniki, <sup>16</sup> D. Garria-Gamez, <sup>16</sup> Y. Gentz, <sup>1</sup>                                                                                                                           |
| <sup>1</sup> I. Grenales, 'II. Grease, 'II. Greaters,"<br>J. Howes, <sup>10</sup> C. HII, <sup>10</sup> G. A. Hoston-Smith, <sup>12</sup>                                                                |
| <sup>4</sup> X. J., <sup>4</sup> L. Jiang, <sup>4</sup> R. A. Johnson, <sup>4</sup> J. Joshi, <sup>4</sup><br>Bidg, <sup>7</sup> M. Kidg, <sup>9</sup> T. Kabilawik, <sup>3</sup> I. Koola, <sup>4</sup> |
| Iswitz, <sup>6</sup> D. Leros, <sup>4</sup> W. C. Louis <sup>14</sup> M. Busthi, <sup>1</sup><br>Murinal, <sup>12</sup> J. Marshall, <sup>1,13</sup> J. Murtin-Also, <sup>10</sup>                       |
| P Martin I P Micro II I Manual I Martin                                                                                                                                                                  |
| 1-current neutrino-induced $K^+$                                                                                                                                                                         |
| eractions in MicroBooNE                                                                                                                                                                                  |
|                                                                                                                                                                                                          |

round for exclusive

h the MicroBooNE

es with Liquid Argon

croBee&E Collaboration

ONE-NOTE-1071-PUB

BOONE\_DIFOOfbal.gov

#### June 2020

#### Abstract

Charged Current

MicroBooNE

<sup>96</sup> S. Deikana, ri<sup>9</sup> D. Cantelli,<sup>10</sup>

i.\* J. N. Conrad.<sup>1</sup>

P. Dotin,<sup>4</sup> A. Dovit,<sup>10</sup>

quid-ages like projective chamber GACTFC projets Issue (EVE) at Permitab. Micro-Nu/2013 phones goals to sting on argon in the 1 GeV mergy regime. The study of advector can large we the background withoutse for future  $\rightarrow K^+ \nu$  channel on argon such as DUNE. In this decunses a of sympa with a  $E^{-}$  that is produced in a charged-survey. ad a ro, in the Mon-RooMI detector. It will focus on how developed by MicroBo-SE to achieve a maple with a 75. ter toward a shacard-convertines production-cross service

nt Events in

er located at

tions allows up to

We present (NC1p) in the

ince considering

UNIVERSITY OF

OXFORD

|    | • |   |
|----|---|---|
| ΈV |   | ( |
|    |   |   |

### 7 new measurements released/ last month!

| <b>B. Baller,<sup>12</sup> C. Ber</b><br>A. Blander <sup>13</sup> A. B<br><b>Previewed at Neutrino</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2022                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| J. I. Crespo Anadén                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| S. Dytman," B. Ebedy," A. Ereditata, 'J. J. Evans, 'R. Fine, '' G. A. Fiorentici Againe," R. S. Fitepatrick,"<br>B. T. Fleming, <sup>36</sup> N. Foppiani, <sup>13</sup> D. Pranco, <sup>30</sup> A. P. Furmanski, <sup>10</sup> D. Garcia Games, <sup>15</sup> S. Gardiner, <sup>11</sup> G. Ge, <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a 17                                                                               |
| <ul> <li>S. Gollapinni,<sup>21,17</sup> D. Goodwin,<sup>16</sup> B. Gramelini,<sup>11</sup> P. Green,<sup>18</sup> H. Greenlee,<sup>11</sup> W. Gu,<sup>2</sup> R. Guenette,<sup>11</sup></li> <li>P. Guzowski,<sup>16</sup> L. Hagaman,<sup>36</sup> O. Hen,<sup>19</sup> C. Hilgenberg,<sup>21</sup> G. A. Borton-Smith,<sup>15</sup> A. Hourlier,<sup>19</sup> R. Itay,<sup>36</sup></li> <li>H. H. 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,</li></ul> | Protos 10 200                                                                      |
| G. James, A. M. L. Lang, A. L. Law, R. A. Jonnson, Y. S. Jaw, D. Kana, N. Kang, N. Kangkay, G. Kanglorgi, W. Ketehme, H. M. Krity, H. T. Kobilaretk, H. I. Kreslo, I. Lepetic, S. K. Li, S. Y. Li, S. K. Lin, K. Kang, K. Kangkay, K. K                                                                                                                                | 4                                                                                  |
| D. A. Martines Cafeedo, <sup>27</sup> K. Mason, <sup>35</sup> A. Mastboum, <sup>35</sup> N. McConkry, <sup>16</sup> V. Moddage, <sup>16</sup> T. Mettiler, <sup>1</sup> K. Miller, <sup>5</sup><br>J. Mills, <sup>28</sup> K. Mistry, <sup>18</sup> A. Mogan, <sup>25</sup> T. Mohayat, <sup>17</sup> J. Moon, <sup>19</sup> N. Mooney, <sup>5</sup> A. F. Moor, <sup>4</sup> C. D. Meore, <sup>17</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x X                                                                                |
| L. Mora Lepin, <sup>18</sup> J. Monsseau, <sup>39</sup> M. Murphy, <sup>34</sup> D. Naples, <sup>24</sup> A. Navrer-Agasson, <sup>18</sup> M. Nebet-Guinot, <sup>10</sup><br>R. K. Neely, <sup>15</sup> D. A. Newmark, <sup>17</sup> J. Nowsk, <sup>11</sup> M. Nunes, <sup>29</sup> O. Palamara, <sup>11</sup> V. Paolone, <sup>24</sup> A. Papadopoulou, <sup>19</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -54<br>trigging & Brown<br>consequent for 58<br>fast poor of runs<br>in Mendlood % |
| y IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and time-ficulty                                                                   |

Nam.<sup>34</sup> R. Fine.<sup>14</sup> <sup>36</sup> A. P. Furmasihi,<sup>21</sup> ini.11 P. Green.1 Ellguiren? G. A. Horten-Smith, 5 A. Hourlier, 9 R. Itay 9 C. James, 1 X. Ji \* L. Jiang, 4 J. H. Jo, 9 R. A. Johnson, Y.-J. Jon,<sup>9</sup> D. Kalen,<sup>9</sup> N. Kamp,<sup>14</sup> N. Baneshipe,<sup>14</sup> G. Karagiong,<sup>9</sup> W. Festimus,<sup>14</sup> M. Kirly,<sup>14</sup> T. Kobilacia,<sup>14</sup> I. Krake,<sup>14</sup> B. Lebor,<sup>14</sup> H. Leyate,<sup>15</sup> K. U.,<sup>16</sup> Y. Li,<sup>14</sup> K. Lin,<sup>17</sup> B. R. Tittligiolo,<sup>16</sup> W. C. Lasin,<sup>14</sup> X. Los,<sup>1</sup> K. Maziwaraa,29 C. Marimi,51 D. Marsden,11 J. Marshal,25 D. A. Maritava Calcole,27 K. Mason,2 A. Mathann,<sup>25</sup> N. McCoakey,<sup>18</sup> V. Moldago,<sup>15</sup> T. Motther<sup>1</sup> K. Miller,<sup>6</sup> J. Mills,<sup>30</sup> K. Mietry,<sup>11</sup> A. Mogan,<sup>30</sup> T. Mohayai,<sup>10</sup> J. Mona,<sup>10</sup> N. Mosaray,<sup>1</sup> A. F. Meer,<sup>4</sup> C. D. Moore,<sup>11</sup> L. Mora Lepin,<sup>10</sup> J. Mouseau,<sup>20</sup> M. Marphy,<sup>14</sup> D. Naples,<sup>24</sup> A. Novrer-Agasson,<sup>28</sup> M. Nebet-Guines,<sup>10</sup> R. K. Nerby,<sup>25</sup> E. A. Newmark/<sup>17</sup> Nonai, <sup>10</sup> N. Nines,<sup>19</sup> D. Pilaman,<sup>11</sup> V. Paclone,<sup>14</sup> A. Papadopoube,<sup>19</sup> V. Papavasilica,<sup>12</sup> S. F. Face,<sup>2</sup> S. Patel,<sup>10</sup> A. Peudel,<sup>10</sup> Z. Parlovic,<sup>11</sup> D. Finsetzicy,<sup>20</sup> I. D. Ponce-Fintes,<sup>20</sup> S. Prince,<sup>11</sup> X. Gian,<sup>2</sup> J. L. Bad,<sup>12</sup> Y. Baleiz,<sup>2</sup> A. Badyar,<sup>20</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>22</sup> I. C. J. Rior,<sup>23</sup> L. Bechester,<sup>26</sup> J. Redriguez,<sup>20</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>22</sup> L. C. J. Rior,<sup>24</sup> L. Bechester,<sup>26</sup> J. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>24</sup> L. Bechester,<sup>26</sup> J. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>24</sup> L. Bechester,<sup>26</sup> J. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>24</sup> L. Bechester,<sup>26</sup> J. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>24</sup> L. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>26</sup> L. Redriguez,<sup>26</sup> M. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>26</sup> L. Redriguez,<sup>26</sup> J. Redriguez,<sup>26</sup> R. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> L. C. J. Rior,<sup>26</sup> L. Redriguez,<sup>26</sup> R. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> R. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> R. Regizni-Gramma<sup>10</sup> L. Regizni-Gramma<sup>10</sup> L. Bas,<sup>26</sup> R. Regizni-Gramma<sup>10</sup> L. Regizni-Gramma<sup>10</sup> R. Regizni-Gramma<sup>10</sup> L. Regizni-Gramma<sup>10</sup> R. Regizni<sup>10</sup> R. Regizni-Gramma<sup>10</sup> R. Regi contributions from accounting pressure restricts control current interactions out to fixed cody  $\mathbf{R}_1$  is high-control on grad arguet time projections channess [[ArtHP0]] is to ming in the Boosen Florithm Househow & Bounding The signal for three between the fixed scalar process from the HP10-ran measure out way for the scalar property of the HP10-ran measurement of the scalar property of the scalar control on of the measurement of  $\Delta r_1$ .

### How many neutrinos are there?



There have been a number of anomalies observed in the past 20odd years that don't quite fit with the three-neutrino picture we know and love

|                                                        | Experiment                                                                    | Туре                                                   | Anomaly                           |            |
|--------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|------------|
|                                                        | LSND                                                                          | DAR                                                    | $\overline{\nu}_{e}$ appearance   |            |
|                                                        | MiniBooNE                                                                     | SBL accel.                                             | V <sub>e</sub> appearance         |            |
|                                                        | MiniBooNE                                                                     | SBL accel.                                             | $\overline{\nu}_{e}$ appearance   |            |
|                                                        | GALLEX/SAGE/BEST                                                              | Source - e capture                                     | V <sub>e</sub> disappearance      |            |
|                                                        | Dooctors                                                                      | Data dacay                                             | $\overline{\nu}_{e}$ rate         |            |
|                                                        | Keactors                                                                      | Bela decay                                             | $\overline{\mathbf{v}}_{e}$ shape | 2          |
|                                                        | ANITA                                                                         | High energy                                            | High-energy events                | er: not an |
| See also:<br>R. Guennette, "Sho<br>G. Karagiorgi, "Sho | ort-Baseline Neutrinos", APS-DPF 201<br>ort-baseline neutrino experiments and | 9 <u>link</u><br>phenomenology", INSS 2019 <u>link</u> | Dischau                           | SC.        |

K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph] (2012) link



There have been a number of anomalies observed in the past 20odd years that don't quite fit with the three-neutrino picture we know and love



K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph] (2012) link

See also:



 $V_{\mu}, \overline{V}_{\mu},$ 



Liquid Scintillator Neutrino Detector: µ<sup>+</sup> decay at rest experiment at Los Alamos National Lab











- Observed excess of V
  <sub>e</sub> at 3.8σ
- If interpreted as two-flavour neutrino oscillation,
   requires Δm<sup>2</sup>~0.2-10eV<sup>2</sup>

### Not consistent with any known 3-flavour oscillation











### ANOMALIES: MINIBOONE



- Similar L/E as LSND: if an oscillation really exists, should see it here too
- Different energy, detector, beam, event signatures, backgrounds





- Recently released updated results (2021) with x2 more data than original anomaly (2009)
- Consistent with LSND results: combined significance of 6.1σ
- Best fit for neutrino oscillation hypothesis:  $\Delta m^2 = 0.04 \text{ eV}^2$

#### Phys. Rev. D 103, 052002





- LSND 90% CL (allowed) LSND 99% CL (allowed)
- MiniBooNE 90% CL (allowed)
- MiniBooNE 95% CL (allowed)
- MiniBooNE 99% CL (allowed)
  - Consistent with LSND results: combined significance of  $6.1\sigma$
- Best fit for neutrino oscillation hypothesis:  $\Delta m^2 = 0.04 \text{ eV}^2$

#### Phys. Rev. D 103, 052002



Ve

MicroBooNE Results

### MINIBOONE



800-ton mineral oil (CH<sub>2)</sub> Cherenkov detector

Detect Cherenkov ring from electrons produced in V<sub>e</sub> CC scattering interactions

However, photons produce

y rete

identical Cherenkov rings





### Is the excess electrons?

- Sterile neutrino oscillations → difficult to explain MiniBooNE excess and all other global data
- Best-fit 2-neutrino sterile oscillation appearance spectrum does not predict data well at very low energies
- More complex models can help
  - Mixed oscillations and decay
  - Resonance matter effects
  - Additional sterile neutrinos
  - Non-unitary mixing
  - …and many more!





### Is the excess photons?

Several sources of photon backgrounds:

**NC㧠mis-ID** 

 $\rightarrow$  measured in-situ

**Dirt** (neutrino interactions outside the detector)

■ → beam timing





- Need x3.18 increase to explain excess
- $\rightarrow$  to be investigated...





### **Or neither?**

- Rich phenomenology developed in recent years
- I'll come back to this!

For now, it's clear that we need more information...



# MICROBOONE





**MicroBooNE**: 170 ton Liquid **Argon Time Projection Chamber** 

Stable detector operation 2015-2021: **longest-running LArTPC to date** 

- >95% DAQ uptime
- $1.52 \times 10^{21}$  POT collected in total (analyses shown here use subsets, not full POT)

Grateful to Fermilab Accelerator Division, Cryogenics team, Operations team, and Scientific Computing Division!











What's next?

### FERMILAB'S NEUTRINO BEAMS

Booster v beam MicroBooNE, SBN program MicroBooNE, SBN program MicroBooNE proton energy: 8 GeV

**≺**----NUMI v beam
NOVA, MINERVA, MINOS+

### **Main Injector**

proton energy: 120 GeV

DUNE v beam

Image: G. Zeller



What's next?

# FERMILAB'S NEUTRINO BEAMS



Booster Neutrino Beam (BNB): 463m

> >99%  $v_{\mu}/\bar{v}_{\mu}$  at peak <E<sub>v</sub>> = 850 MeV

NuMI Neutrino Beam (NuMI): ~680m

8° off axis  $\rightarrow$  4% V<sub>e</sub>

Image: G. Zeller




































**Fime (drift direction** 

Wire number (beam direction)

### LArTPCs:

 → enable incredible precision measurements at scale
 → Transformative physics in oscillations, BSM, and crosssection measurements

Kirsty Duffy 45

9 cm

# LARTPC STRENGTH: ELECTRONS AND PHOTONS







### SHORT-BASELINE NEUTRINOS AT FERMILAB



#### **MiniBooNE**





### SHORT-BASELINE NEUTRINOS AT FERMILAB



#### **MiniBooNE**

#### **MicroBooNE**



### 470m



### SHORT-BASELINE NEUTRINOS AT FERMILAB



### INVESTIGATING THE MINIBOONE LOW-ENERGY EXCESS

### **Photon search**

Target  $\Delta \rightarrow N\gamma$ : I  $\gamma$  ly  $\rho$  and  $\gamma$   $\rho$ 

V

arXiv:2110.00409 [hep-ex]

p



# SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]





# SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]



### No evidence of an excess in either sample



### INVESTIGATING THE MINIBOONE LOW-ENERGY EXCESS









#### **MicroBooNE** Results







arXiv:2110.14054 [hep-ex]



# EXCLUSION CONTOURS



MICROBOONE-NOTE-III6-PUB

### What does this mean for the sterile neutrino hypothesis?

 We haven't seen evidence of an excess → place constraints on oscillation phase space for a new neutrino flavour





### OSCILLATION PARAMETER DEGENERACY

MiniBooNE Anomaly





V<sub>e</sub> disappearance V<sub>e</sub> appearance  $N_{\nu_e} = N_{\text{intrinsic }\nu_e} P_{\nu_e \to \nu_e} + N_{\text{intrinsic }\nu_\mu} P_{\nu_\mu \to \nu_e}$  $= N_{\text{intrinsic }\nu_e} \left[ 1 + (R_{\nu_{\mu}/\nu_e} \sin^2 \theta_{24} - 1) \sin^2 2\theta_{14} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \right]$ **Cancellation if sin^2\theta\_{24} = \mathbf{R}\_{ve/v\mu}** (ratio of  $V_e$  to  $V_{\mu}$  in beam)  $\rightarrow$  about 0.005 in BNB  $\rightarrow$  about 0.04 in NuMI



### FUTURE PROSPECTS: BNB+NUMI



- BNB R<sub>ve/vµ</sub>: 0.005
  NuMI R<sub>ve/vµ</sub>: 0.04
- Combining both data sets → significantly improved sensitivity
- → Upcoming BNB + NuMI analysis will be sensitive to full LSND allowed regions





# INTERPRETATIONS

These slides heavily inspired by P. Machado, Fermilab PAC, November 2021



60

### WHAT DOESTHIS MEAN?





### WHAT DOESTHIS MEAN?





### WHAT DOESTHIS MEAN?





### EXPLORATION OF THE MINIBOONE EXCESS

|                            | First series of results (1/2 the MicroBooNE data set) |              |         |                  |                                            |                |                   |               |              |
|----------------------------|-------------------------------------------------------|--------------|---------|------------------|--------------------------------------------|----------------|-------------------|---------------|--------------|
| Reco<br>topology<br>Models | 1 <b>e</b> 0p                                         | 1e1p         | 1eNp    | 1eX              | e <sup>+</sup> e <sup>-</sup><br>+ nothing | e⁺e⁻X          | 1γ <sup>0</sup> p | 1 $\gamma$ 1p | 1γΧ          |
| eV Sterile v Osc           | ~                                                     | ~            | ~       | ~                |                                            |                |                   |               |              |
| Mixed Osc + Sterile $v$    | V [7]                                                 | V [7]        | V [7]   | V [7]            |                                            |                | <b>V</b> [7]      |               |              |
| Sterile v Decay            | [13,14]                                               | [13,14]      | [13.14] | <b>V</b> [13,14] |                                            |                | [4,11,12,15]      | <b>1</b> [4]  | <b>1</b> [4] |
| Dark Sector & Z' *         | <b>/</b> [2,3]                                        |              |         |                  | [2,3]                                      | <b>/</b> [2,3] | <b>/</b> [1,2,3]  | [1,2,3]       | [1,2,3]      |
| More complex higgs *       |                                                       |              |         |                  | <b>1</b> [10]                              | <b>1</b> [10]  | [6,10]            | [6,10]        | [6,10]       |
| Axion-like particle *      |                                                       |              |         |                  | <b>/</b> [8]                               |                | <b>V</b> [8]      |               |              |
| Res matter effects         | <b>V</b> [5]                                          | <b>1</b> [5] | V [5]   | <b>V</b> [5]     |                                            |                |                   |               |              |
| SM $\gamma$ production     |                                                       |              |         |                  |                                            |                | ~                 | V             | ~            |

\*Requires heavy sterile/other new particles also



### DARK NEUTRINOS

These slides heavily inspired by P. Machado, Fermilab PAC, November 2021 Ballett, Pascoli, Ross-Lonergan PRD 2019 Ballett, Hostert, Pascoli PRD 2020 Bertuzzo, Jana, Machado, Zukanovich PRL 2018 Bertuzzo, Jana, Machado, Zukanovich PLB 2019 Arguelles, Hostert, Tsai PRL 2019





### HIGGS PORTAL SCALARS

These slides heavily inspired by P. Machado, Fermilab PAC, November 2021 Batell, Berger, Ismail PRD 2019 Patt, Wilczek 2006



#### Motivation:

- Portal to dark sector
- Connection to Higgs sector
- Experimental synergy with HNL search

### **Experimental signature:**

- No hadronic activity
- e<sup>+</sup>e<sup>-</sup> or µ<sup>+</sup>µ<sup>-</sup>
- Invariant mass





# MICROBOONE'S HIGGS PORTAL SCALARS SEARCH

- Search for e<sup>+</sup>e<sup>-</sup> decays from scalars coming from NuMI hadron absorber
  - I event observed → 95%
    C.L. excludes new regions of phase space
- Additional µ-µ+ search coming soon
- e<sup>+</sup>e<sup>-</sup> techniques applied to LEE search: in progress





# MICROBOONE'S HIGGS PORTAL SCALARS SEARCH

Search for e<sup>+</sup>e<sup>-</sup> decays from scalars coming from NuMI hadron absorber

- I event observed → 95%
  C.L. excludes new regions of phase space
- Additional µ-µ+ search coming soon
- e<sup>+</sup>e<sup>-</sup> techniques applied to LEE search: in progress





Too many papers to list, but see

Ballett, Pascoli, Ross-Lonergan PRD 2019

Ballett, Pascoli, Ross-Lonergan JHEP 2017

Kelly, Machado PRD 2021

HEAVY NEUTRAL LEPTONS

These slides heavily inspired by P. Machado, Fermilab PAC, November 2021

> HNL produced in beam decay pipe, propagates to detector, and decays



# e<sup>t</sup> e<sup>t</sup> e<sup>t</sup>

#### **Motivation:**

- Possibly related to neutrino mass
- Dirac vs Majorana nature of HNLs can be probed, if discovered

### **Experimental signature:**

- Several possibilities
- Delayed timing w.r.t.
  beam neutrinos

Less likely/ harder to explain mB anomaly

Reconstruct invariant mass?





### MICROBOONE'S HNL SEARCH Phys. Rev. D 101, 052001 (2020)

- Search for HNLs decaying to μπ pairs
- Dedicated trigger configuration to detect HNL decays that occur after the neutrino beam spill







# MICROBOONE'S HNL SEARCH

Phys. Rev. D 101, 052001 (2020)

Set upper limits on extended PMNS matrix element  $|U_{\mu4}|^2 \rightarrow most$  constraining experimental limits at higher masses. Updated measurement coming soon!





### FUTURE INVESTIGATIONS

BNB Data collection: Protons on Target (POT)



Kirsty Duffy 72
#### FUTURE INVESTIGATIONS





- Neutrinos are one of the least-wellunderstood particles in the Standard Model
- Neutrino oscillation is beyond the Standard Model, and opens the door to exciting new possibilites
- However, a lot remains that we don't understand (both within the 3-flavour oscillation picture and outside it)
- I present(ed) new data from the MicroBooNE experiment that sheds light on one of the existing anomalies
- More data (x2 data statistics), more analyses, and more experiments (SBN) will soon add to this picture





#### THANK YOU





#### OSCILLATION PARAMETER DEGENERACY



OXFORD

#### OSCILLATION PARAMETER DEGENERACY





# A NOTE ON NEUTRINO ENERGY

18 cm

- Each analysis selects different combinations of particles
- Each analysis uses a different reconstruction paradigm
- Electron-search results presented as a function of reconstructed neutrino energy
  - Remember we have to estimate neutrino energy from the particles we measure
  - → reconstructed neutrino energy != true neutrino energy
  - → AND reco→true mapping is different between analyses





# SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]

 Simple hypothesis test: use combined Neyman-Pearson χ<sup>2</sup> as test statistic

Nucl. Inst. Meth.A 961 (2020) 163677

- Data consistent with nominal  $\Delta \rightarrow N\gamma$  prediction
- Data rejects LEE model hypothesis in favour of nominal prediction at 94.8% CL





#### SINGLE PHOTON SEARCH



Slide credit: Mark R-L











# A SIMPLE MODEL OFTHE MINIBOONE EXCESS







# A SIMPLE MODEL OFTHE MINIBOONE EXCESS





Interpretations

### DOINGTHE MEASUREMENT

Tune neutrino interaction model to external data















Interpretations

### DOINGTHE MEASUREMENT

Tune neutrino interaction model to external data

#### v<sub>µ</sub> CCQE-like



#### $v_{\mu}$ **CCQE-like** Data/prediction: 1.23 $\rightarrow$ 1.08





Tune neutrino interaction model to external data



# "Sideband" → independent (i.e. non-signal) data sample

Use to:

- validate analysis strategy and modelling
- constrain backgrounds in signal sample
- further constrain models to provide data-driven prediction for signal region







Interpretations



Interpretations





2.0

ROON

## DOINGTHE MEASUREMENT



5

0

0.5

Med

Low

1.0

Reconstructed  $E_{\nu}$  [GeV]

1.5

High

- Blind analysis of fake data sets
- Progressive V<sub>e</sub> unblinding

94

Kirsty Duffy



#### I) Simple hypothesis test

Does the data prefer the LEE model over the non-LEE model?

#### 2) Signal strength measurement

 Use Feldman-Cousins procedure to measure best-fit signal strength (x) assuming a linear scaling of the LEE model



#### THE MASS HIERARCHY





### (TRYINGTO) MEASURE CP VIOLATION

#### **T2K** (Tokai to Kamioka)



#### NOvA

(NuMI Off-axis V<sub>e</sub> Appearance)





### (TRYINGTO) MEASURE CP VIOLATION





MiniBooNE Anomaly

MicroBooNE Results

**µ<u>Boo</u>NÞ** 



