WIMPs and beyond: from LUX-ZEPLIN to future liquid xenon observatory

Kelsey C Oliver Mallory

Imperial College London March 1st, 2023 *University of Birmingham Particle Physics Seminar Programme* Imperial College London

Outline

1. Introduction to dark matter

2. Liquid xenon time projection chambers (LXe TPCs)

3. Recent results from the LUX-ZEPLIN (LZ)

4. Future xenon observatory for dark matter and other rare events

Distance (light years)

Mon. Not. R. Astron. Soc. 311, 441±447 (2000) By Mario De Leo - Own work, CC BY-SA 4.0

Cosmic microwave background

Dark matter properties

Dark: does not interact electromagnetically

Stable over the lifetime of the universe

Cold: moves slowly enough for galaxy formation

A particle could meet these criteria

We are in the Milky Way

Local dark matter density ~ 0.3 GeV/cm³

Average dark matter velocity v ~ 220 km/s

Assuming Maxwell-Boltzmann distribution of dark matter

By David (Deddy) Dayag - Own work, CC BY-SA 4.0

Detecting dark matter particles

Possibilities for particle dark matter

Dark matter scattering rate

Xenon

Many isotopes inc 129 Xe/ 131 Xe (26.4/21.2%) with unpaired neutrons and 136 Xe, a candidate for $0\nu\beta\beta$

Few problematic radio-isotopes

Boils at cryogenic temperatures (~ -110 C)

11

Black Hills State University Brandeis University Brookhaven National Laboratory **Brown University** Center for Underground Physics Edinburgh University Fermi National Accelerator Lab Imperial College London Lawrence Berkeley National Lab. Lawrence Livermore National Lab. LIP Coimbra Northwestern University Pennsylvania State University Royal Holloway University of London SLAC National Accelerator Lab. South Dakota School of Mines & Tech South Dakota Science & Technology Authority STFC Rutherford Appleton Lab. Texas A&M University University of Albany, SUNY University of Alabama University of Bristol University College London University of California Berkeley University of California Davis University of California Los Angeles University of California Santa Barbara University of Liverpool University of Maryland University of Massachusetts, Amherst University of Michigan University of Oxford University of Rochester University of Sheffield University of Wisconsin, Madison

LUX-ZEPLIN (LZ) collaboration

LZ Collaboration Meeting University Of Maryland 5th-7th January 2023

U.S. Department of Energy Office of Science Science and Technology Facilities Council

Underground Research Facility South Dakota Science and Technology Authority

Sanford Underground Research Facility (SURF) in Lead South Dakota

TPC design

1.5 m dia x 1.5 m height

PTFE everywhere for light collection

7 T active LXe (5.5 T fiducial)

4x wire-grid electrodes

- E_{drift} = 190 V/cm ER/NR discrimination = 99.9%
- E_{_ext,gas} = 7.7 kV/cm
- Extraction efficiency = 80.5%

Cathode HV connection

Fiducialization

Background rate

Xenon is dense, $\sim 3 \text{ g/cm}^3$

Short n/ γ attenuation length (~few cm for γ) compared to size of LZ TPC (1.5 m x 1.5 m)

Reject events from the high-background rate regions near the edge of the TPC

Reject multiple scatters

Electron/nuclear recoil discrimination

Timeline: $Design \rightarrow Construction \rightarrow Operation$

Construction

Calibration

4.50

4.25

4.00

4.00 ([bhd]) 3.75 3.50 3.50 2.25

3.25

3.00

2.75

Noble Element Simulation Technique (NEST) to model detector response

60 keV. 3.4 keV 1.8 keV 9 keV_{ee} 2.9 keV_{ee} 5.1 keV_{ee} 7.4 keVee 15 keV_{nr} 25 keV_{nr} 35 keV_m 10 20 30 40 50 70 80 60 S1*c* [phd]

CH₃T to validate accuracy of ER leakage model to 4σ

DD neutrons to validate NR band model

- FR/NR mean
- - 10 & 90% contours

Light gain g1: 0.114 ± 0.002 phd Charge gain g2: 47.1 ± 1.1 phd Single electron size: 58.5 phd Extraction efficiency: 80.5%

99.9% rejection of ERs below the median of a 40 GeV WIMP

Data quality

Fiducial volume cut: 5.5 ± 0.2 T 140 120 Livetime vetoes: $90 \rightarrow 60$ days 200 100 Drift Time $[\mu s]$ Waveform quality cuts 400 $z \,[\mathrm{cm}]$ 8(1.0 60 600 40 Trigger 0.8 Measured + S1 threshold 800 + SS & data analysis cuts with CH₃T 20 Efficiency Providency + ROI and DD/AmLi 1.00 -1000 70^{2} $0 \ 20^2 \ 30^2$ 60^{2} 40^{2} 50^{2} 0.75 Reconstructed r^2 [cm²] 0.50F 50% efficiency: 5.3 keV_{nr} 0.2 0.25 Events surviving all selections 0.00 Skin-prompt-tagged events × 0.0 OD-prompt-tagged events 0 10 20 30 40 50 60 70 24 Recoil Energy [keV_{nr}]

Background model

Source	Expected Events
β decays + Det. ER	218 ± 36
$ u \mathrm{ER} $	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8
124 Xe	5.0 ± 1.4
¹³⁶ Xe	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	276 ± 36
^{37}Ar	[0, 291]
Detector neutrons	$0.0^{+0.2}$
$30 \mathrm{GeV/c^2}$ WIMP	
Total	—

Fit results

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$\nu { m ER}$	27.3 ± 1.6	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
¹³⁶ Xe	15.2 ± 2.4	15.3 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
³⁷ Ar	[0, 291]	$52.1_{-8.9}^{+9.6}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17

For every WIMP mass best fit result is consistent with 0

WIMP sensitivity

Frequentist, two-sided profile-likelihood-ratio (PLR) test statistic

Signal rate must be non-negative 90% confidence bands

Power constraint at π_{crit} = 0.32

No salting or blinding

Recommended conventions for reporting results from direct dark matter searches (arXiv:2105.00599)

Next steps for LZ

1. First 90 day science run complete

2. Ultimate goal to accumulate 1000 livedays

3. Continue producing science results with existing data

4. Look further into the future

Memorandum of understanding towards a next-generation LXe experiment

More than 100 senior scientists from 16 countries signed MoU on July 6, 2021

First XLZD consortium meeting in June 27-29, 2022

Website: https://xlzd.org/

Science with liquid xenon

White paper published in <u>J. Phys. G: Nucl.</u> <u>Part. Phys. 50 013001 (2023)</u> (particular thanks to Rafael Lang, Purdue)

~600 authors from 145 institutes

72 UK authors from 13 institutes

Details the breadth of physics enabled by a next-generation xenon observatory

OPEN ACCESS IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 (115pp)

https://doi.org/10.1088/1361-6471/ac841a

Topical Review

A next-generation liquid xenon observatory for dark matter and neutrino physics

> J Aalbers^{1,2}, S S AbdusSalam³, K Abe^{4,5}, V Aerne⁶, F Agostini⁷. S Ahmed Maouloud⁸. D S Akerib^{1,2}. D Y Akimov⁹, J Akshat¹⁰, A K Al Musalhi¹¹, F Alder¹², S K Alsum¹³, L Althueser¹⁴, C S Amarasinghe¹⁵, F D Amaro¹⁶, A Ames^{1,2}, T J Anderson^{1,2}, B Andrieu⁸, N Angelides¹⁷, E Angelino¹⁸, J Angevaare¹⁹, V C Antochi²⁰. D Antón Martin²¹, B Antunovic^{22,23}, E Aprile²⁴, H M Araúio¹⁷. J E Armstrong²⁵, F Arneodo²⁶, M Arthurs¹⁵, P Asadi²⁷, S Baek²⁸, X Bai²⁹, D Baipai³⁰, A Baker¹⁷, J Balajthy³¹, S Balashov³², M Balzer³³, A Bandyopadhyay³⁴, J Bang³⁵, E Barberio³⁶, J W Bargemann³⁷, L Baudis⁶, D Bauer¹⁷, D Baur³⁸, A Baxter³⁹, A L Baxter¹⁰, M Bazyk⁴⁰, K Beattie⁴¹, J Behrens⁴², N F Bell³⁶, L Bellagamba⁷, P Beltrame⁴³, M Benabderrahmane²⁶, E P Bernard^{41,44} G F Bertone¹⁹, P Bhattacharjee⁴⁵, A Bhatti²⁵, A Biekert^{41,44}, T P Biesiadzinski^{1,2}, A R Binau¹⁰, R Biondi⁴⁶, Y Biondi⁶, H J Birch¹⁵, F Bishara⁴⁷, A Bismark⁶, C Blanco^{20,48}, G M Blockinger⁴⁹, E Bodnia³⁷, C Boehm⁵⁰, A I Bolozdynya⁹, P D Bolton¹², S Bottaro^{51,52}, C Bourgeois⁵³, B Boxer³¹, P Brás⁵⁴, A Breskin⁵⁵, P A Breur¹⁹, C A J Brew³², J Brod⁵⁶, E Brookes¹⁹, A Brown³⁸, E Brown⁵⁷, S Bruenner¹⁹, G Bruno⁴⁰, R Budnik⁵⁵, T K Bui⁵, S Burdin³⁹, S Buse⁶, J K Busenitz³⁰, D Buttazzo⁵², M Buuck^{1,2}, A Buzulutskov^{58,59}, R Cabrita⁵⁴, C Cai⁶⁰, D Cai⁴⁰ C Capelli⁶, J M R Cardoso¹⁶, M C Carmona-Benitez⁶¹, M Cascella¹², R Catena⁶², S Chakraborty⁶³, C Chan³⁵, S Chang⁶⁴, A Chauvin⁶⁵, A Chawla⁶⁶, H Chen⁴¹, V Chepel⁵⁴, N I Chott²⁹, D Cichon⁶⁷, A Cimental Chavez⁶, B Cimmino⁶⁸, M Clark¹⁰, R T Co⁶⁹, A P Colijn¹⁹, J Conrad²⁰,

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the tile of the work, journal citation and DOI.

0954-3899/22/013001+115\$33.00 © 2022 The Author(s). Published by IOP Publishing Ltd Printed in the UK

Ultimate mass: 50-80 T

Detector

Compact: 2-4 m diameter x height

Considering modifiable detector: $20 \rightarrow 80$ T

Allows us to operate detector with smaller amount of xenon: identify and fix problems

Siting

Considering 5 underground sites

Detector size requires significant space for underground fabrication

FEASIBILITY STUDY FOR DEVELOPING THE BOULBY UNDERGROUND LABORATOR		
	INTO A FACILITY FOR FUTURE MAJOR INTERNATIONAL PROJECTS	
	Supported by the STFC Opportunities Call 2019	
H M Araúj S M Pa	o1, J Dobson², C Ghag², S Greenwood³, V A Kudryavtsev4, P Majewski³ Iling5, V Pěč4, R Saakyan², P R Scovell ⁵ , N Smith ⁶ , and T J Sumner ^{1,*}	
	¹ Imperial College London, UK ² University College London, UK ³ STFC Rutherdrod Apoteton Laboratory, UK ⁴ University of Sheffield, UK ⁵ STFC Davible University of Sheffield, UK	
	⁶ STFC Boulby Underground Laboratory, UK ⁶ SNOLAB, CA [*] Corresponding author (Lsumner@imperial.ac.uk)	
	June 25, 2021	
	Issue v1.0	

DEDODT

Boulby feasibility study indicates technical viability

A challenge, but a great opportunity

Backgrounds

Goal is to be dominated by neutrino backgrounds

Self-shielding from γ -ray and neutron backgrounds

⁸⁵Kr purity levels sufficient for next generation achieved

²²²Rn challenging but there is R&D to fix it

Solutions for Rn removal

2 ongoing experiments \rightarrow 2 solutions to every problem

LZ uses adsorption of xenon gas on charcoal

XENONnT uses cryogenic distillation enhanced for radon removal

WIMP projected sensitivity

Evolution of sensitivity

Dominated by LXe TPCs for the last two decades

Phys. Ģ Nucl. Part Phys. 50 013001 (2023)

41

¹³⁶Xe $0\nu\beta\beta$ backgrounds

¹³⁶Xe $0\nu\beta\beta$ projected sensitivity

With major investment controlling backgrounds (beyond DM needs) could match nEXO sensitivity

DARWIN: 40 T

Next-gen (G3): 70 T

Xenon Futures R&D Programme

UK has started the R&D phase towards a next generation experiment

Exploring SiPM readout for γ -ray and radon background reduction (Xenia)

Cold radon emanation facility (CREF)

Attempting observation of the Migdal effect from nuclear recoils (MIGDAL)

Summary

1. LZ is operating and taking high quality physics data

- a. All detectors are performing well
- b. Backgrounds are within expectation

2. With its first run, LZ has achieved world-leading WIMP sensitivity

3. Broad physics program still lies ahead for LZ

4. The xenon community is uniting into the XLZD Consortium to build the ultimate xenon rare event observatory

Additional Slides

Sensitivity to WIMP-p interactions through higher order nuclear effects, albeit with large uncertainty ³⁷Ar decays ($T_{1/2}$ = 35 d, monoenergetic 2.8 keV ER deposition from electron capture)

Predominant source of argon in LZ is through cosmogenic spallation LZ Collaboration, Phys. Rev. D 105, 082004 (2022), 2201.02858

Activity estimates can be formed showing approximately 100 decays in data (large uncertainty)

Livetime

60 live days exposure after cuts collected over the beginning of 2022

The cuts form high rates of photons andHelectrons following larger S2 signals is dominantN

Cause	Impact (%)
Hotspot cut	3.1
Muon event veto	0.2
Electron train	29.8
High S1 rates	0.2
Undetected muons	0.5
Electronics nois	e <0.001
Veto cuts	5

Calibrations

- Many sources:
- ^{83m}Kr: monoenergetic ERs, 32.1 keV and 9.4 keV
- ^{131m}Xe: monoenergetic ER, 164 keV
- CH₃T (tritium): beta spectrum Q-value: 18.6 keV
- Deuterium-deuterium (DD): triggered 2.45 MeV neutrons
- Activation lines
- AmLi: continuum neutrons, isotropic
- Radon chain alpha decays
- And more (²²⁰Rn, YBe, ²⁵²Cf, ²²Na, ²²⁸Th, etc)
- Some uses:
 - Tune the position reconstruction algorithm in horizontal plane
 - Flat fielding of S1 and S2 signals
 - Energy reconstruction and detector response
 - Measure efficiencies

 Light gain g1: 0.114 ± 0.002 phd/photon

- Charge gain g2: 47.1 ± 1.1 phd/electron
- Single electron size: 58.5 phd

Doke Plot: energy calibration

E = W (S1/g1+S2/g2)

W = average energy required to prejudice one quantum

