

Status of searches for EW-scale supersymmetry after LHC Run 2

Iacopo Vivarelli University of Sussex University of Birmingham, 28/09/2022

Run 2 is a good moment to summarise

- •No large increase of centre-of-mass energy or luminosity expected for a while.
 - Results will not be superseded quickly
- Role of the authors in Run 2 SUSY search programme.

International Journal of Modern Physics A | VOL. 37, NO. 02

Status of searches for electroweak-scale supersymmetry after LHC Run 2

Wolfgang Adam and Iacopo Vivarelli 🖂

https://doi.org/10.1142/S0217751X21300222

https://arxiv.org/abs/2111.10180, https://doi.org/10.1142/S0217751X21300222

From "ATLAS - A 25 years Insider Story of the LHC Experiment", (with reference to the Losanne meeting in 1984)

In this context, it appeared for the first time that it was possible to quantitatively compare the potentials of vastly different accelerators, in terms of answering some of the fundamental questions at the time. These included questions on the existence (or not) of the following: (i) a Higgs boson responsible for the mechanism of the electroweak symmetry breaking, (ii) heavier quarks, including the missing third-generation top quark, and (iii) supersymmetry (see Chap. 9).

• LHC successfully completed (i), (ii) and (iii)

115 UNIVERSITY OF SUSSEX 35 Events / 5 GeV $\sqrt{s} = 7 \text{ TeV}$ Ldt = 0.05 fb⁻¹ Apr 24, 2011 30 25 ATLAS Preliminary $H \rightarrow ZZ^{(*)} \rightarrow 4l$ channel 20 Signal (m_{_}=125 GeV) Background ZZ^(*) 15 Background Z+jets, tt 🔶 Data 10 5 Δ Data - Background 10 -10 450 50 M₄₁ [GeV] 50 100 150 200 250 300 350 400 500 Events / 10 GeV 450E ATLAS Preliminary — ♦ Data $400 = \sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 0.0 \text{ fb}^{-1}$ WW WZ/ZZ/Wy 350 \vdash H \rightarrow WW^(*) \rightarrow evµv with 0/1 jet tŦ 300 Single Top Z+jets 250E W+jets 200Ē H [125 GeV] 150Ē 06.04.2012 100E 50 Data-Background 50 40 30 20 10 C -10 -20 50 100 150 200 250 300

m_⊤ [GeV]

(i) A Higgs boson.....

University of Birmingham - Seminar - 29/06/2022

(ii)...third generation top quark...

- •LHC transformed top quark measurement into precision physics.
 - ... including rare processes, some of which observed for the first time.

√s [TeV]

ATLAS Preliminary

(iii)Supersymmetry

ATLAS SUSY Searches* - 95% CL Lower Limits

June 2021							$\sqrt{s} = 13 \text{ TeV}$
	Model	Się	gnature	e ∫⊿	<i>C d t</i> [fb⁻	¹] Mass limit	Reference
ñ	$\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}^0_1$	0 e, µ mono-jet	2-6 jets 1-3 jets	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	139 36.1	ở 1.0 1.85 m(t ² ₀)<400 GeV ở [8× Degen.] 0.9 m(i)-m(t ² ₀)=5 GeV	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ž 2.3 m(t ⁰ ₁)=0 GeV ž Forbidden 1.15-1.95 m(t ⁰ ₁)=1000 GeV	2010.14293 2010.14293
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}W\tilde{\chi}_{1}^{0}$	1 e, µ	2-6 jets	-	139	<i>§</i> 2.2 m(<i>ℓ</i> ⁰ ₁)<600 GeV	2101.01629
nclusive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^{\prime}$	<i>ee</i> , μμ	2 jets 7 11 jete	E_T^{miss}	36.1	$\frac{g}{g}$ 1.2 $m(\tilde{g})-m(\tilde{\chi}'_{1})=50 \text{ GeV}$	1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1^2$	0 e,μ SS e,μ	6 jets	E_T^{mass}	139	g 1.17 m(k₁) < 600 GeV ĝ 1.15 m(ĝ) = 200 GeV	2008.06032 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	E_T^{miss}	79.8 139	ἔ 2.25 m(ℓ ₁ ⁺)<200 GeV ἔ 1.25 m(ε)-m(ℓ ₁ ⁺)=300 GeV	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	$ \begin{array}{c c} \tilde{b}_1 & 1.255 & m(\tilde{c}_1^0) < 400 {\rm GeV} \\ \tilde{b}_1 & 0.68 & 10 {\rm GeV} < \Delta m(\tilde{b}_1, \tilde{x}_1^0) < 20 {\rm GeV} \\ \end{array} $	2101.12527 2101.12527
arks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	139 139	δ1 Forbidden 0.23-1.35 Δm(x ₁ ⁰ , x ₁ ⁰) = 130 GeV, m(x ₁ ⁰) = 100 GeV δ1 0.13-0.85 Δm(x ₁ ⁰ , x ₁ ⁰) = 130 GeV, m(x ₁ ⁰) = 0 GeV	1908.03122 ATLAS-CONF-2020-031
nbs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1 1.25 $m(\tilde{t}_1^0)=1 \text{GeV}$	2004.14060,2012.03799
pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$	1 e,µ	3 jets/1 b	E_T^{miss}	139	\vec{t}_1 Forbidden 0.65 m(\vec{k}'_1)=500 GeV	2012.03799
¹ ge	$I_1I_1, I_1 \rightarrow \tau_1 DV, \tau_1 \rightarrow \tau_G$ $\tilde{L}_1, \tilde{L}_1 \rightarrow \sigma \tilde{V}_1^0 / \tilde{Z}_1 \rightarrow \sigma \tilde{V}_1^0$	1-2 T 0 e. u	2 jets/10	E_T E^{miss}	36.1	r1 Forbidden 1.4 m(r1)=600 GeV δ 0.85 m(v ⁰)=0 GeV 0.95	1805.01649
di. Gi	$r_1r_1, r_1 \rightarrow c \alpha_1 / c c, c \rightarrow c \alpha_1$	0 e, µ	mono-jet	E_T^{Tniss}	139	\vec{t}_1 0.55 $m(\vec{t}_1)^{-5} \text{GeV}$	2102.10874
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \mathcal{X}_2^{\vee}, \mathcal{X}_2^{\vee} \rightarrow Z/h \mathcal{X}_1^{\vee} \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	139 139	Image: style	2006.05880 2006.05880
	${ ilde \chi}_1^{\pm} { ilde \chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu$	≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$\frac{\hat{x}_{+}^{*}/\hat{x}_{-}^{0}}{\hat{x}_{+}^{*}/\hat{x}_{-}^{0}}$ 0.96 $m(\hat{x}_{+}^{0})=0$, wino-bino $\hat{x}_{+}^{*}/\hat{x}_{-}^{0}$ 0.205 $m(\hat{x}_{+}^{0})=m(\hat{x}_{+}^{0})=0$ (wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$ 0.42 m $(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple <i>l</i> /jets		E_T^{miss}	139	$\tilde{x}_1^{\pm}/\tilde{x}_2^0$ Forbidden 1.06 m (\tilde{x}_1^0) =70 GeV, wino-bino	2004.10894, ATLAS-CONF-2021-022
ect V	$\tilde{\chi}_1^* \tilde{\chi}_1^*$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e, µ		E_T^{miss}	139	\tilde{X}_{1}^{*} 1.0 $m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{X}_{1}^{*})+m(\tilde{X}_{1}^{*}))$	1908.08215
dire	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \chi_1^{\circ}$ $\tilde{\epsilon} \tilde{\epsilon} \tilde{\epsilon} \epsilon \tilde{\nu}^0$	27	0 iets	E ^{miss} E ^{miss}	139	τ [$\tau_L, \tau_{R,L}$] 0.16-0.3 0.12-0.39 m(k_1)=0 m(k_1)=0 m(k_1)=0	1911.06660
	$\iota_{L,R}\iota_{L,R}, \iota \rightarrow \iota \lambda_1$	ее, µµ	≥ 1 jet	$E_T^{T_{miss}}$	139	t 0.256 m(ℓ)=0 GeV	1911.12606
	$HH, H \rightarrow hG/ZG$	$0 e, \mu$ $4 e, \mu$	≥ 3 b 0 iets	E ^{miss} E ^{miss}	36.1 139	\tilde{H} 0.13-0.23 0.29-0.88 BR $(\tilde{\chi}_{1}^{0} \to h\tilde{G})=1$ \tilde{H} 0.55 BR $(\tilde{\chi}_{1}^{0} \to Z\tilde{G})=1$	1806.04030 2103.11684
		$0 \ e, \mu \geq$	2 large jets	E_T^{miss}	139	\hat{H} 0.45-0.93 BR $(\hat{k}_1 \to 2G)$ =1	ATLAS-CONF-2021-022
ed s	$Direct \tilde{\chi}_1^* \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$\begin{array}{c} \chi_{\pm}^{*} & \textbf{0.66} & \text{Pure Wino} \\ \chi_{\pm}^{*} & \textbf{0.21} & \text{Pure higgsino} \end{array}$	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
-liv icle	Stable g R-hadron		Multiple		36.1	<i>ğ</i> 2.0	1902.01636,1808.04095
art	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple	-	36.1	\tilde{g} [r(\tilde{g}) =10 ns, 0.2 ns] 2.05 2.4 m($\tilde{\chi}_1^0$)=100 GeV	1710.04901,1808.04095
ЪС	$\ell\ell, \ell \rightarrow \ell G$	Displ. lep		E_T^{mass}	139	\tilde{r}, μ 0.7 $\tau(\ell) = 0.1 \text{ ns}$ \tilde{r} 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812 2011.07812
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 e,µ			139	$\tilde{X}_{1}^{\tau}/\tilde{X}_{1}^{0}$ [BR($Z\tau$)=1, BR($Z\epsilon$)=1] 0.625 1.05 Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW / Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{l33} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m $(\tilde{\chi}_{1}^{0})$ =200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-	5 large jets	5	36.1	\tilde{g} [m $\tilde{\chi}_{11}^{0}$ =200 GeV, 1100 GeV] 1.3 1.9 Large χ_{112}^{m}	1804.03568
2	$ \begin{array}{c} tt, t \rightarrow t \mathcal{X}_1^{\circ}, \mathcal{X}_1^{\circ} \rightarrow tbs \\ \widetilde{t}, \widetilde{t}, b \widetilde{Y}^{\pm}, \widetilde{Y}^{\pm}, bbc \end{array} $		> 4b		36.1	$I [A_{323} = 20^{-4}, 10^{-2}]$ 0.55 1.05 m(\hat{X}_1)=200 GeV, bino-like	AI LAS-CONF-2018-003
Ω.	$\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 \rightarrow bs$	2	2 jets + 2 b		36.7		1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 <i>b</i> DV		36.1 136	\vec{t}_1 0.4-1.45 BR $(\vec{t}_1 \rightarrow t_2)$ 8.4 BR $(\vec{t}_1 \rightarrow t_2)$ 9.20% \vec{t}_1 [10-10< t'_{11} <10-8, 30-10< t'_{11} <30-9] 1.0 1.6 BR $(\vec{t}_1 \rightarrow t_2)$ 1.0 BR $(\vec{t}_1 \rightarrow t_2)$ ($\cos \theta_1$ = 1)	1710.05544 2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 <i>e</i> , µ	≥6 jets		139	X ₁ ⁰ 0.2-0.32 Pure higgsino	ATLAS-CONF-2021-007
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]							

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

(iii)Supersymmetry

ATLAS and CMS

CMS Integrated Luminosity Delivered, pp

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

Complexity of SUSY parameter space

- •The minimal supersymmetric extension of the Standard Model (MSSM) contains 124 new parameters.
- Even hypotheses well backed-up by experimental results¹, one ends up with a **19-dimension parameter space**.
- Approach:
 - Use simplified models.
 - Then combine these results to make statements on SUSY model (and particle masses) exclusions.

¹These are: absence of new sources of CP violation, absence of flavour changing neutral currents, universality of 1st and 2nd generation.

SUSY conserving sector	SUSY breaking sector					
3 coupling constants for SU(3)xSU(2)sU(1)	5 3x3 hermitian mass matrices (one per EW multiplet)					
4 Yukawa couplings per generation	3 complex 3x3 matrices (Higgs trilinear couplings to sfermions)					
	3 mass terms for the Higgs sector + 2 additional off-diagonal terms					
	Higgs VEV expectation angle β					

Complete Vs Simplified models

Real SUSY model

- Many concurrent production processes.
- Many different decay modes for SUSY particles.
- Many diagrams to target.

Simplified model

- Very few production processes (often only one).
- Very few decay modes (often only one).
- One (or few) diagrams to target.

Complete Vs Simplified models

Real SUSY model

- Pros:

- Direct connection to physics.
- Direct statement on UV completion.
- Cons:
 - Analysis strategy very model dependent.

Simplified model

- Pros:
 - Analysis strategy closely connected to event topology.
 - "Model independent" constraints: they apply whenever the signature considered is realised in a model.
- Cons:
 - Mass limits do not extend automatically to complete scenarios.

Example 1 - SUSY "fixing" g-2

- A class of models fixing muon g-2 and satisfying DM constraints has $\tilde{\chi}_1^0$ almost degenerate with $\tilde{\chi}_1^{\pm}$.
- Are these excluded by the LHC?

1000

800 $m_l^{2\pm}$ (GeV) 600 ATLAS 13 TeV LIMIT 400 (g - 2)_µ $(g-2)_{\mu} + \Omega h^2$ 200 • $(g-2)_{\mu} + \Omega h^2 + DD$ $(g-2)_{\mu}$ + Ωh^2 + DD + LHC 200 400 800 1000 600 $m_{\chi_1^0}$ (GeV)

The LHC limit is based on $\tilde{\ell} \to \tilde{\chi}_1^0 \ell$, but here $\tilde{\ell} \to \nu \tilde{\chi}_1^{\pm} \to \nu \ell \nu \tilde{\chi}_1^0$ is relevant (and in this case ℓ is very soft).

SUSSEX

Example 2 - Nearly degenerate states

- A class of models **fixing muon g-2** and satisfying **dark matter constraints**.
- Dark matter could be composed by the **lightest neutral Higgsino state**.
- Is this excluded by the LHC?

LHC simplified models map directly into this phase space

UNIVERSITY OF SUSSEX

Production and decay

- Simplified model **production cross sections** determined by Standard Model physics (for a 2HDM model) + mixing.
- •Thumb rule for sensitivity (works well for simple scenarios): ~ 50 events are enough for discovery.

Example decay -R-parity conserving gluino decay. Signature: $p_{\rm T}^{\rm miss}$ + stuff

Example decay -R-parity violating stop decay. Signature: depends on the topology

The electroweak sector

•The mass hierarchy and couplings of the neutralinos and charginos depend on the mixture in terms of the superpartners of the **standard model B and W fields**, and of the **two Higgs doublets**. The mixing matrices are

SMLL-ÌSH STURF SMALL-ÌSH OM CSTIFF MO

OF SUSSEX

Why so many SUSY searches?

• Each of ATLAS and CMS has tens of different SUSY searches performed.

OF SUSSEX

Strong production

University of Birmingham - Seminar - 29/06/2022

Gluino pair-production

UNIVERSITY OF SUSSEX

Signature:

• jets

• missing transverse momentum Main background processes:

• $Z \rightarrow \nu \nu + jets$

•
$$W \to \ell \nu + jets, t\bar{t} \to \ell \nu + jets$$

where the lepton is lost or is a τ_{had} • Multijet (but it is typically very well suppressed)

• For example, the blue line is obtained by a 0-lepton analysis categorising events based on: $H_T = \sum p_T^{jets}, H_T^{miss}, N_{jets}, N_b$

Gluino pair-production

- Some dependence on the exclusion power on the topology.
- The combination of the analyses gives a nice overall exclusion

- This plot includes many different scenarios each with 100% branching ratio.
- $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ relevant for naturalness.
- $\tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0, \tilde{g} \rightarrow q\bar{q}Z\tilde{\chi}_1^0$ are an example of electroweak sector with a wino-bino electroweak sector.
- Etc...

OF SUSSEX

Naturalness wants light stops

- The naturalness of the Higgs boson mass requires:
 - A Higgsino mass of maximum few hundred GeV.
 - A top partner mass at the TeV scale.
 - A gluino mass of maximum few TeV.

OF SUSSEX

Naturalness wants light stops

	Signature: • jets • B-jets
	 Iop quarks (possibly boosted) missing transverse momentum Possibly leptons Etc
n the d by veen	 Main background processes: tt, ttV W + heavy flavours, Z + HF Multiboson production

UNIVERSITY OF SUSSEX

RPV strong production

Signature:

- Jets (and leptons depending on which RPV coupling is on)
- Possibly b-jets

Main background processes:

- Depends on the signature
- Typically multijet, *tī*, *tībb*, etc.
- If **R-parity is not conserved**, the LSP is **not stable anymore**.
- RPV 1L + jets in the plot:
 - Data driven background estimation for high-jet multiplicity configurations of ttbar.
 - Different EW sector configurations considered, higgsino limits weaker by ~200 GeV.
- Limits are at least on a par with RPC scenarios.

OF SUSSEX

Long-lived strong production

• Sparticles become long-lived if:

- Decay **mediator largely off-shell** (for example $\tilde{g} \rightarrow \tilde{q}^*q \rightarrow qq\tilde{\chi}_1^0$, but the \tilde{q}^* has very large mass - This is the split SUSY scenario).
- Small phase space available in the decay (compressed states, e.g. pure wino EW sector).
- Small couplings in the decay.

- A plethora of experimental techniques (and a lot of fun).
- Sometimes challenging for the detector configuration.
- One of the areas where the gain from run 1 has been more visible.

Long-lived strong production

<u>EXO-19-021</u>

Displaced jets in CMS: - looking at dijet events where a secondary vertex from displaced tracks can be reconstructed

Electroweak production (Where Run 2 really made huge difference)

Electroweak production

(X)

Wino-bino

Higgsino

Wino

GGM/GMSB

 \otimes

RPC

RPV

(Long

lived)

- The core of SUSY searches in Run 2.
- Directly probing the dark matter sector.

 $\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$

 $\tilde{t}\tilde{t},\tilde{b}\tilde{b}$

 $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0 \tilde{\chi}_1^0$

 $\ell\ell, ilde{ au} ilde{ au}$

Full hadronic final states

F SUSSEX

137 fb⁻¹ (13 TeV)

SUS-21-002

CMS

800

Higgsino

50

45

40

35

30

25

20

15

10

5

 $\Delta m(\widetilde{\chi}_2^0, \widetilde{\chi}_1^0)$ [GeV]

- Light Higgsinos are needed in natural SUSY scenarios.
- Higgsinos (maybe with a bino component) are a good dark matter candidate.
- •Typical mass splittings in the Higgsino multiplet: o(10 GeV) or less.
- Pair produced Higgsino will decay to the lightest neutralino emitting soft objects (leptons).

 $\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$

 $\tilde{t}\tilde{t},\tilde{b}\tilde{b}$

RPC

RPV

Wino-bino

Higgsino

Wino

[ຍ_ ນັ້¹210²

10

 10^{-1}

- If Higgsino mass split very small (300 MeV), then the chargino becomes long-lived.
- This is in common with the pure Wino scenario, where the mass plit can go down to ~160 MeV.
- Experimental signature: disappearing track in the detector.

 $\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$

Wino-bino

RPV

(Long

lived)

University of Birmingham - Seminar - 29/06/2022

• Direct staus are of interest mainly because of their role in possible dark matter scenarios (stau co-annihilation)

Wrapping up

	Pre-LHC	Post-LHC						
"Losanne 1984" SUSY	Simple realisations of SUSY (mSUGRA/ CMSSM) viable.	Simple realisations of SUSY excluded.						
Naturalness	Expected m(gluino) ~ m(squark) ~ m(stop) ~ hundreds of GeV.	Classical naturalness arguments need m(gluino) < few TeV, m(stop) < 1 TeV under severe stress. More modern arguments relax these constraints. However consensus on m(Higgsino) < hundreds of GeV (and not fully explored).						
Dark Matter	Stop/chargino/stau cohannihilations as favourite regularisation mechanism for a bino-like DM candidate.	Bino-like dark matter strongly constrained by electroweak SUSY searches. Higgsino- and wino-like dark matter still largely allowed.						
Muon g-2	Muon g-2Can be fully (and easily) incorporated in EW-Scale SUSY.Can be fully (and easily) SUSY (on a much							
Solo 2500 G g g p Solo 2500 G g g p G g g g p G g g g p G g g g g g g g g g g g g g g g g g g g	roduction, $\tilde{\mathbf{g}} \rightarrow \mathbf{q} \tilde{\chi}_{1}^{0}$ roduction (8 states), $\tilde{\mathbf{q}} \rightarrow \mathbf{q} \tilde{\chi}_{1}^{0}$ Cl limits for m. = 0. JHEP 02 (2021) 143 $\tilde{\mathbf{J}} \approx \tilde{\mathbf{L}}$	$0 = \underbrace{\tilde{t}_{i}\tilde{t}_{i}}_{i} \operatorname{production}, \tilde{t}_{i} \rightarrow t \tilde{\chi}_{i}^{0}}_{\zeta_{i}^{2}} W^{\pm} Z \tilde{\chi}_{i}^{0} \xrightarrow{PRD 104 (2021) 052001}_{i}$						

- Tried to deliver **reasons and principles** to navigate the **body of SUSY searches** from ATLAS and CMS.
 - And I highlighted some of the crucial limits.
- Full statement on the state of the art will be done by ATLAS and CMS with the analyses combination and MSSM scans.
- It is hard to identify another sector of HEP where LHC had such a dramatic impact.
- After 14 years of LHC (and other HEP enterprises), the questions of **naturalness and dark matter** haven't yet found an answer.
- No significant BSM excess at the LHC may be frustrating. At the same time, anomalies start to appear (not necessarily connected with SUSY) and LHC has till to collect >95% of its expected luminosity. Exciting (but also strange) times for HEP.

Affinare gli strumenti

Funziona?

 $\Delta m(\widetilde{b}_1, \widetilde{\chi}_1^0)$ [GeV]

University of Birmingham - Seminar - 29/06/2022

UNIVERSITY OF SUSSEX L'idea

Supersymmetry and the LHC

$$\beta_{g_a} \equiv \frac{d}{dt} g_a = \frac{1}{16\pi^2} b_a g_a^3, \qquad (b_1, b_2, b_3) = \begin{cases} (41/10, -19/6, -7) & \text{Standard Model} \\ (33/5, 1, -3) & \text{MSSM} \end{cases}$$

$$\frac{d}{dt}\alpha_a^{-1} = -\frac{b_a}{2\pi} \qquad (a = 1, 2, 3)$$

Evolution of RGE modified by additional particle content in MSSM

Couplings unify at ~ 10¹⁶ GeV

Naturalness

- Why SUSY? Many possible answers.
- But why SUSY at ~ TeV (rather than at 10 or 100 TeV)?
 - Fix hierarchy if sparticles masses < 1 TeV
 - if the Higgs couples to a higher physical scale A, then its natural mass is of the order of A. Why is the Higgs light?
 - WIMP miracle: weakly interacting DM points to a DM mass of ~ 1 TeV.

With SUSY, quadratic effects (big hierarchy) are cancelled exactly, one is left with only logs (little hierarchy)

Naturalness wants light stops

OF SUSSEX

The "natural" gluino production scenario

- The naturalness of the Higgs boson mass requires:
 - A Higgsino mass parameter of maximum few hundred GeV
 - A top partner mass at the TeV scale
 - A gluino mass parameter of maximum few TeV

Naturalness wants light<u>stops</u>

UNIVERSITY OF SUSSEX

The "natural" gluino production scenario

Signature:

- jets
- B-jets
- Top quarks (possibly boosted)
- missing transverse momentum
- Possibly leptons and multileptons
- Etc...

Main background processes:

- *tt*, *ttbb*
- W + heavy flavours, Z + HF
- Multiboson production

OF SUSSEX

Standard Model - Joys and pains

The role of colliders

- Colliders are **the only experimental tool** to access the EW scale **directly**.
- The Standard Model predictions agree with data over the board.

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc	۲ ۲			· · · · · ·				m. com		· · · · · · · · · · · ·
M_H [GeV]	125.1 ± 0.2	yes	$125.1_{-0.2}^{+0.2}$	$100.2^{+24.4}_{-20.6}$	$100.3^{+23.5}_{-19.9}$	Ğ		68°	% and 95% C	L contou	rs		···· m _t	= 172.47 Ge	∍V
M_W [GeV]	80.379 ± 0.013	_	80.363 ± 0.007	80.356 ± 0.008	80.356 ± 0.007	ت ۸	80.5)	Fit w/o M _M	, and m _t	measurem	ents	o =	0.46 GeV	
Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001	Ξ				m_{t} and	M _H measu	irements	- 0 =	0.40 @ 0.50	theo, Stev
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1879 ± 0.0020	91.1967 ± 0.0099	91.1969 ± 0.0096		~ 4 -	📕	📕 Direct M _w	and m _t n	neasureme	ents <mark>¦</mark>			· / -
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4950 ± 0.0014	2.4945 ± 0.0016	2.4945 ± 0.0016		80.45	י <u>ד</u>						and the second s	
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	-	41.483 ± 0.015	41.474 ± 0.016	41.474 ± 0.015			-					1	, · ·	
R^0_ℓ	20.767 ± 0.025	-	20.744 ± 0.017	20.725 ± 0.026	20.724 ± 0.026			E							
$A_{\rm FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01623 ± 0.0001	0.01622 ± 0.0001	0.01624 ± 0.0001		80.4					L'e		1	
A_{ℓ} (*)	0.1499 ± 0.0018	-	0.1471 ± 0.0005	0.1471 ± 0.0005	0.1472 ± 0.0004			_				- Th	H		
$sin^2 \theta_{eff}^{\ell}(Q_{FB})$	0.2324 ± 0.0012	-	0.23151 ± 0.00006	0.23151 ± 0.00006	0.23150 ± 0.00005									/	
$\sin^2 \theta_{\text{eff}}^{\ell}(\text{TEV})$	0.2318 ± 0.0003	-	0.23151 ± 0.00006	0.23150 ± 0.00006	0.23150 ± 0.00005			. — М., м	comb. ± 1σ				8//	1	
A_c	0.670 ± 0.027	-	0.6679 ± 0.00022	0.6679 ± 0.00022	0.6680 ± 0.00016		80.35		= 80.379 ± 0.013	3 GeV					, i'm
A_b	0.923 ± 0.020	-	0.93475 ± 0.00004	0.93475 ± 0.00004	0.93475 ± 0.00003			F "		/	1.1				
$A_{FB}^{0,c}$	0.0707 ± 0.0035	_	0.0737 ± 0.0003	0.0737 ± 0.0003	0.0737 ± 0.0002			-		· / .					
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	-	0.1031 ± 0.0003	0.1033 ± 0.0004	0.1033 ± 0.0003		80.3			6			1 × ** *		·
R_c^0	0.1721 ± 0.0030	-	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006		00.5	' -		and the second s		· · · · ·			-
R_b^0	0.21629 ± 0.00066	-	0.21579 ± 0.00011	0.21578 ± 0.00012	0.21577 ± 0.00004			E	1	N		N. and and	1.		-
m _c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_		00 75	Ŀ	50 GeV	125 Gev	000	G ^e i	Ger		
\overline{m}_b [GeV]	$4.20 \substack{+0.17 \\ -0.07}$	yes	$4.20 \pm 0.17 \\ -0.07$	-	-		00.25	- Mr	MH.		MH	MAN.			TITTer SW 🖁
$m_t [\text{GeV}]^{(igtarrow)}$	173.06 ± 0.94	yes	173.54 ± 0.86	$175.97\substack{+2.11\\-2.12}$	$176.00 {+2.03 \atop -2.04}$			+			1				
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \bigtriangleup)}$	2758 ± 10	yes	2756 ± 10	2738 ± 41	2739 ± 39		-		150		160	170		100	100
$\alpha_s(M_Z^2)$	-	yes	$0.1197 \substack{+0.0030 \\ -0.0029}$	0.1197 ± 0.0030	0.1198 ± 0.0028		I	140	150		100	170		180	190
															m. [GeV]

The LHC Run 2

100

80

60

CMS Integrated Luminosity Delivered, pp

2010, 7 TeV, 45.0 ${
m pb}^{-1}$

2016, 13 TeV, 41.6 fb⁻¹

2017, 13 TeV, 49.8 fb⁻¹ **2018, 13 TeV, 67.9** fb^{-1}

2011, 7 TeV, 6.1 fb^{-1} **2012, 8 TeV, 23.3** fb⁻¹ **2015, 13 TeV, 4.3** fb⁻¹

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

University of Birmingham - Seminar - 29/06/2022

100

80

60

UNIVERSITY

EX