MUON-NEUTRINO

HEAVY

NO TACHYON ELECTRON UP QUARK DOWN QUARK TAU NEUTR

MUON-NEUTRINO TACHYON N NEUTRON DOWN QUARKTAU

•00000000000

LIGHT

Like its first-generation sibling lepton the electron-neutrino, the **MUON-NEUTRINO** is extremely difficult to detect (hence the bandit's mask). Discovered in 1962, it is emitted in the decay of a muon. Its mass is about one-third of an electron.

 v_{μ}

Acrylic felt with poly fill for minimum mass.

The search for heavy neutrinos at NA62

Theory of heavy neutrinos The NA62 R_K detector Analysis strategy Background suppression Outlook

Francis Newson | 20th May 2014

Neutrino mass

Standard Model Particles

SM particle charges

Field	SU(3)	$SU(2)_L$	T^3	Y/2	$Q = T^3 + Y/2$
$g^a_\mu(\text{gluons})$	8	1	0	0	0
(W^\pm_μ, W^0_μ)	1	3	$(\pm 1, 0)$	0	$(\pm 1, 0)$
B^0_μ (1	1	0	0	0
$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	3	2	$\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$	1/6	$\begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}$
u_R	3	1	0	2/3	2/3
d_R	3	1	0	-1/3	-1/3
$\chi_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	1	2	$\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$	-1/2	$\begin{pmatrix} 0\\ -1 \end{pmatrix}$
e_R	1	1	0	-1	-1
$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$	1	2	$\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$	1/2	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$
$\widehat{\Phi} = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix}$	1	2	$\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$	-1/2	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$

Mass terms

• A mass term in the SM Lagrangian:

$$m\bar{\psi}\psi = m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R)$$

• Eg: down quark mass:

$$m\bar{d}d = m(\bar{d}_Rd_L + \bar{d}_Ld_R)$$

SM particle charges

Mass terms

• A mass term in the SM Lagrangian:

$$m\bar{\psi}\psi = m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R)$$

• Eg: down quark mass:

$$\begin{split} m\bar{d}d &= m(\bar{d}_R d_L + \bar{d}_L d_R) \\ & T^3: +1/2 + 0 = +1/2 \\ & Y/2: -1/6 -1/3 = -1/2 \end{split}$$

Not invariant under SU_L(2)xU(1) symmetry -> FORBIDDEN

SM particle charges

BEH and all that

• We can make an allowed term with an extra scalar field:

• After spontaneous symmetry breaking, we see a mass term and a Higgs coupling term:

$$\mathcal{L}_{\text{Yukuwa}}(e) = -\frac{Y_d v}{\sqrt{2}} \bar{d}d - \frac{Y_d}{\sqrt{2}} \bar{d}dH$$

Yukuwa couplings

down type quarks charged leptons $\mathcal{L}_{Yuk}(d) = Y_d \left[\bar{q}_L \Phi d_R + \bar{d}_R \Phi^{\dagger} q_L \right] \qquad \mathcal{L}_{Yuk}(e) = Y_e \left[\bar{\chi}_L \Phi e_R + \bar{e}_R \Phi^{\dagger} \chi_L \right]$

$\begin{array}{ll} \textbf{up type quarks} & \textbf{neutral leptons} \\ \mathcal{L}_{\mathrm{Yuk}}(u) = Y_u \left[\bar{q}_L \widehat{\Phi} u_R + \bar{u}_R \widehat{\Phi}^{\dagger} q_L \right] & \mathcal{L}_{\mathrm{Yuk}}(\nu) = Y_\nu \left[\bar{\chi}_L \widehat{\Phi} \underbrace{\chi}_R + \underbrace{\chi}_R \widehat{\Phi}^{\dagger} \chi_L \right] \end{array}$

 By construction, there are no right-chiral neutrinos in the SM so we cannot construct the Yukuwa term corresponding to neutrino mass.

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$ Neutrino oscillations

Evidence for neutrino oscillation and, hence, neutrino mass is now overwhelming

What do the neutrino mass terms look like?

• Just introduce v_R ? (analogous to u_R)

$$\mathcal{L}_{\text{Yuk}}(\nu) = Y_{\nu} \left[\bar{\chi}_L \widehat{\Phi} \nu_R + \bar{\nu}_R \widehat{\Phi}^{\dagger} \chi_L \right]$$

- It works, but doesn't help to explain the small neutrino masses
- Y_v has to be unnaturally small

Right handed neutrinos are more flexible

• RH neutrinos are singlets of $SU(2)_L$ and $U(1)_{Y.}$

$$-\mathcal{L}_{\text{bare}} = \frac{1}{2} B \overline{\hat{\nu}}_L \nu_R + h.c.$$

$$-\mathcal{L}_{\text{bare}} = \frac{1}{2} \sum_{l,l'} B_{ll'} \overline{\hat{N}}_{lL} N_{l'R} + h.c.$$

mixing between mass $N_{lR} \equiv \sum_{\alpha} V_{l\alpha} \nu_{\alpha R}$
and flavour states $N_{lR} \equiv \sum_{\alpha} V_{l\alpha} \nu_{\alpha R}$

• This term violates lepton number (an accidental symmetry) but does not violate the gauge symmetries of the SM

See-saw mechanisms

• The combined neutrino mass term looks like:

$$-\mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\hat{N}}_L \end{pmatrix} \begin{pmatrix} 0 & M \\ M^T & B \end{pmatrix} \begin{pmatrix} \hat{\nu}_R \\ N_R \end{pmatrix} + h.c.$$

mass matrix from
Higgs coupling mass matrix from lepton
number violating terms

• Diagonalizing this matrix gives the mass eigenstates. If $B \gg M$:

$$m_1 \approx \frac{M^2}{B}$$
 , $m_2 \approx B$.

SM neutrino

heavy neutrino

Models

- Many BSM models result in a see-saw effect. E.g.
 - Additional symmetries at high energy SU(2)_LxSU(2)_RxU(1)_Y
 - Expanded Higgs sector $\Delta = (\Delta^0 \Delta^- \Delta^-)$
- Careful parameter choice can help solve other problems:
 - vMSM (Neutrino Minimal Standard Model)
 Fixing heavy neutrino masses at the electroweak scale, produces a dark matter candidate and a source of baryon asymmetry

Neutrinos in kaon decay

- Weak decays produce neutrinos in flavour eigenstates
- A flavour eigenstate is a superposition mass eigenstates
- We can look for heavy mass state component

$$K^{+} \qquad \begin{array}{c} \mu^{+} \\ \text{experiment} \end{array} \\ R_{0h} \equiv \frac{\Gamma(K^{+} \rightarrow \mu^{+}\nu_{h})}{\Gamma(K^{+} \rightarrow \mu^{+}\nu_{\mu})_{123}} \\ R_{0h} = |U_{\mu h}|^{2}\kappa \qquad \begin{array}{c} \text{kaon physics} \\ \text{cancels} \end{array} \\ \\ \text{theory:} \\ \text{extended} \\ \text{PMNS matrix} \end{array} \\ \begin{array}{c} \text{kinematic} \\ \text{factors} \end{array} \\ \end{array}$$

 $\kappa = \lambda^{\frac{1}{2}} f_{\mathfrak{M}}$

Heavy neutrino kinematics

 Increasing neutrino mass decreases phase space Increasing neutrino mass releases helicity constraints

Heavy neutrino kinematics

experiment
$$\longrightarrow R_{0h} = |U_{\mu h}|^2 \kappa$$
 — maths theory

- Kinematic endpoint occurs when $m_v = m_K m_\mu$
- Then neutrino is produced at rest in kaon frame.

Heavy neutrino searches

Neutrino decay searches

- Look for heavy neutrino decay products
- Strong limits but tied to model of neutrino decay

Peak searches

- Look for peaks in reconstructed neutrino mass
- Weaker limits but model independent

MY ANALYSIS

Peak search strategy

- Collect $K^+ \rightarrow \mu^+ v_\mu$ events
- Reconstruct neutrino mass from kaon and muon momenta

$$m_{\rm miss}^2 = (p_K - p_\mu)^2$$

 Look for a peak at non-zero missing mass

Existing limits

NA62

NA48/1/2 NA62:R_K NA62 Fixed target kaon decay-in-flight experiments

R_K 2007

$$R_K = \frac{\Gamma(K \to e\nu)}{\Gamma(K \to \mu\nu)}$$

my source of heavy neutrinos

- Accurately predicted in the SM and sensitive to NP.
- 2007 data set used to measure $R_{\rm K}$ with 0.4% precision

- 4 months of data taking
- Minimum bias sample of K^+ decays: ~10⁷ in the μ channel

Heavy neutrino analysis

Analysis strategy

$$m_{\nu}^2 = p_{\nu}^2 = (p_K - p_{\mu})^2$$

Single track selection

 Select events with 1 'good' track in the drift chambers (additional 'ghost' tracks can be ignored)

Good tracks:

- In time with the trigger $|\Delta t| < 62.5 \text{ ns}$
- In momentum range
 3
- Closest distance of approach to K⁺ < 10cm
- Estimated vertex within 110m decay volume

Selected Tracks

- positive charge
- CDA < 3.5cm
- track quality > 0.7

Single track backgrounds in MC

Required:

particle identification to distinguish π^+ and μ^+

photon vetoing to suppress π^0

kinematics to suppress halo

Heavy neutrino signals

Heavy neutrino signals

Background studies

MC simulation

CMC

Decay distributions

Geant3

- detector geometry
- particle interaction with matter
- secondary particle decays
- Detector response

Photon vetoing: LKr Calorimeter

Photon veto

Drift chamber spectrometer

- Resolution was important in R_{K} measurement for $\mu\text{-}e$ separation

Spectrometer resolution

- Signal region lies in the far tail of the $K_{\mu2}$ missing mass spectrum, so far tails of momentum resolution matter

 Far tails of multiple Coulomb scattering are not well simulated in GEANT3

Using the calorimeter to study the spectrometer

 $K_{2\pi}$ is closed: all particles can be detected •

Can reconstruct entire event from photons in LKr and kaon momentum

- Kinematic fit results in χ^2 with 1 degree of
- Cut at $\chi 2 < 0.16$ to obtain very pure $K_{2\pi}$ sample, independently of spectrometer

Kinematic distributions: data and MC

• Use spectrometer to reconstruct π^0 mass and p_T spectrum

Discrepancies are corrected by artificially introducing additional scattering in MC

Particle Identification: Muon veto

• Originally used to reduce trigger rates from $K^+ \rightarrow \mu^+ \pi^0 v$

Muon detection condition

- Require a hit in both planes 1 and 2 (ignore MUV3)
- Match hit position to extrapolated track position (with momentum dependent tolerance)

Simulation

 In my MC samples, official simulation stops at LKr.

 Simulate muon scattering by hand then re-weight to match efficiency distributions in data.

Muon detection efficiency

- Select a pure sample of muons, independently of MUV, with a tight kinematic selection
- Then look for associated muon hits

Efficiency measurements

 Iterate between measurements as a function of **momentum** and **xy position** in MUV plane

50

100

(150 (100) ∕

100

50

0

-50

-100

-150 -150

-100

-50

0

Particle identification

Muon Veto

- Suppress decays to pions by rejecting events with no muon signal
- Events with $\pi^+ \rightarrow \mu^+$ decays remain

Beam halo

• A flux of muons, coming from beam kaon and pion decays upstream of the decay volume.

HALO simulation program

 Dedicated program for simulating beam halo muons: transfer matrix approach

 Muons which pass through DCH1 are highlighted in red

 One muon halo event reconstructed for every 5 million kaons simulated

Qualitative agreement

· Qualitative features of the data are reproduced

- Ultimately, MC simulation is not good enough for quantitative studies
- Use a data driven approach instead

Data driven halo estimate

NA62 ran with various combinations of K⁺ and K⁻ beams

Data driven halo estimate

• Apply my K⁺ selection to data-sets without any K⁺ in them:

• Any positive tracks must come from K⁺ decays **before** the absorber, i.e. the beam halo (or K⁻ $\rightarrow \pi^+\pi^-\pi^-$, a small correction from MC)

• Measured shape is scaled to my data set using the region $m^2_{miss} < 0$

Data driven results

Test halo estimate studying regions where halo dominates

- 11 GeV/c
- 2000 cm < zvertex < 7200cm
- 2.5 cm < CDA < 6.5 cm
 (enrich halo vs kaon decays)
- θ < 0.013 (heavy neutrinos are at low θ so very high θ is irrelevant)

Data driven results

Test halo estimate studying regions where halo dominates

- 11 GeV/c
- 2000 cm < zvertex < 7200cm
- 2.5 cm < CDA < 6.5 cm
 (enrich halo vs kaon decays)
- θ < 0.013 (heavy neutrinos are at low θ so very high θ is irrelevant)

Kinematic cuts

- Optimise to reject **halo** but preserve **signal** (plots show $m_v = 300 \text{ MeV/c}^2$)
- Cut simultaneously in:
- z coordinate of vertex
 muon momentum
- ✤ angle between K and µ directions
- closest distance of approach between K and μ

Single track backgrounds in MC

Required:

particle identification to distinguish π^+ and μ^+

photon vetoing to suppress π^0

kinematics to suppress halo

Optimised selection

• $K_{\mu3}$ is the main background

Expected sensitivity

• Full systematics calculations in process. Result is expected to be statistics limited.

The future

- Current analysis limited by statistics and $K_{\mu3}$ background
- The **beam halo** is also a tricky background
- The new NA62 detector benefits from a hermetic photon veto and event by event kaon momentum measurement
- A K_{µ2} sample with **10x my statistics** could easily be collected.
- NA62 is well placed for a future search for heavy neutrinos

Conclusions

- The current search for heavy neutrinos at NA62 will extend the range neutrino masses excluded by peak searches in kaon decays.
- A future analysis could significantly improve on the current limits.

Field notation

• From Pal and Mohapatra:

$$\psi(x) = \int \frac{d^3p}{\sqrt{(2\pi)^3 2E_p}} \sum_{s=\pm\frac{1}{2}} \left(a_s(\vec{p}) u_s(\vec{p}) e^{-ip \cdot x} + \hat{a}_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ip \cdot x} \right)$$

$$\overline{\psi} = \psi^{\dagger} \gamma_0$$

$$\widehat{\psi} = \gamma_0 C \psi^*$$

$$\overline{\widehat{\psi}} = \widehat{\psi^{\dagger}} \gamma_0 = \psi^T C^{-1}$$

$$C^{-1}\gamma_{\mu}C = -\gamma_{\mu}^{T}$$

- a annihilates particle
- a^{\dagger} creates particle
- \widehat{a} annihilates anti-particle

 \widehat{a}^{\dagger} annihilates particle

Chirality

• The anti-particle of a left-chiral neutrino is a right-chiral neutrino

Majorana neutrinos

$$-\mathcal{L}_{\text{mass}} = M\overline{\nu}_L\nu_R + B\overline{\hat{\nu}}_L\nu_R + h.c.$$
$$-\mathcal{L}_{\text{mass}} = M\overline{\nu}_L N_R + B\overline{\hat{N}}_L N_R + h.c.$$

 $\tan 2\theta = 2M/B$ $n_1 = n_{1L} + n_{1R} = \cos \theta (\nu_L - \hat{\nu}_R) - \sin \theta (\hat{N}_L - N_R)$ $n_2 = n_{12} + n_{2R} = \sin \theta (\nu_L + \hat{\nu}_R) + \cos \theta (\hat{N}_L + N_R).$

$$-\mathcal{L}_{\text{mass}} = m_1 \overline{n_1}_L n_{1R} + m_2 \overline{n_2}_L n_{2R} + h.c.$$

 $n_1 = -\widehat{n_1} \qquad \qquad n_2 = -\widehat{n_2}$

• 2.54x10⁶ muons in final spectrum

E949

• 1.70x10¹² stopped kaons

LKr

LKr: Projective geometry

- Projective tower structure converges 110m upstream
- Allows calibration using π^0 decay, independent of longitudinal fluctuations $z_0 = 110m$ start of Ks decay volume $m_{\pi^0}^2 = E_1 E_2 \sin \theta_{12}^2$

Lo

V0

• In normal use, this geometry must be corrected for:

$$y = y_0 \left(1 + \frac{z_d}{z_0} \right) \quad z_d = k_z + k_E \ln \left(\frac{E}{E_0} \right)$$

Neutral trigger

Scintillating fibres installed inside LKr calorimeter

Fig. 23. Neutral hodoscope.

Trigger

- Q1: hit in the charged hodoscope (downscaling = 600)
- Q1X1TRKLM : additional maximum DCH multiplicity cut (DS = 150)

Q1 / (Q1×1TRKLM)

- Use Q1x1TRKLM sample
 for maximum statistics
- Use Q1 sample to measure Q1x1TRKLM efficiency

Kinematics optimisation to remove halo

Geant3 vs Geant4

