Beauty to doubly open charm decays at LHCb

Fionn Bishop

University of Cambridge

Birmingham Particle Physics Seminar 02/03/22

Fionn Bishop, University of Cambridge

- New Physics may be at energies inaccessible directly by the LHC
 - \rightarrow Look for indirect effects on flavour physics observables
 - CKM parameters
 - Lepton universality

[http://ckmfitter.in2p3.fr]

- CKM triangle determined with quantities accessible in tree- and loop-level decays
 - $\blacksquare \ SM \to equal$
 - NP could break this equality
- Beauty to open charm decays provide access to these parameters

γ, β

[http://ckmfitter.in2p3.fr]

- CKM phase γ determines amount of hadronic CP violation in SM
- Accessible in interference between $b \rightarrow c$ and $b \rightarrow u$ transitions
 - Measurement dominated by $B^+ \rightarrow DK^+$
- One of least well-measured CKM parameters:

•
$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$
 [JHEP 12
(2021) 141]

$$\mathcal{A}^{CP} = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B} \to \overline{f})}$$

$$\begin{split} V_{\rm CKM} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-iY} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{iY} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{iY} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{iY} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{iY} & c_{23}c_{13} \end{pmatrix} \end{split}$$

[http://ckmfitter.in2p3.fr]

CKM phase γ : GLW method

$$\begin{array}{l} & \mathcal{B}(B^{\pm} \to D^{0}_{+}K^{\pm}), \ \mathcal{B}(B^{+} \to D^{0}K^{+}), \ \mathcal{B}(B^{+} \to \overline{D}^{0}K^{+}) \\ & \bullet \text{ CP-even eigenstate } D^{0}_{+} \text{ identified as } \pi^{+}\pi^{-} \text{ or } K^{+}K^{-} \\ & \bullet \frac{A(B^{+} \to D^{0}K^{+})}{A(B^{+} \to \overline{D}^{0}K^{+})} \sim 0.1 \text{ limits sensitivity} \end{array}$$

CKM phase γ : GLW method

$$\begin{array}{l} & \mathcal{B}(B^{\pm} \rightarrow D^{0}_{+}K^{\pm}), \ \mathcal{B}(B^{+} \rightarrow D^{0}K^{+}), \ \mathcal{B}(B^{+} \rightarrow \overline{D}^{0}K^{+}) \\ & \bullet \text{ CP-even eigenstate } D^{0}_{+} \text{ identified as } \pi^{+}\pi^{-} \text{ or } K^{+}K^{-} \\ & \bullet \frac{A(B^{+} \rightarrow D^{0}K^{+})}{A(B^{+} \rightarrow \overline{D}^{0}K^{+})} \sim 0.1 \text{ limits sensitivity} \end{array}$$

CKM phase γ

• Time-dependent • $\Gamma(t)(B_s^0 \rightarrow D_s^{\pm}K^{\mp})$

γ with $B_c^+ \rightarrow DD$ decays

- $\frac{A(B_c^+ \rightarrow D^0 D_s^+)}{A(B_c^+ \rightarrow \overline{D^0} D_s^+)} \sim 1 + \text{no strong phase difference expected} \text{ [PRD 65 034016]}$
 - $\rightarrow\,$ Very strong interference with GLW final states!
 - $\rightarrow\,$ Excellent sensitivity to γ for a given yield
- Could also do GGSZ extraction

- Large range in predicted branching fractions
 - \rightarrow Measurement useful for constraining understanding of B_c^+
- Hadronic B branching fractions could be affected by New Physics [EPJC 80 951, PRD 102

071701, JHEP 10 (2021) 235]

■ e.g. left-handed W'

P ⁺	$\mathcal{B}/10^{-6}$		
$D_c \rightarrow$	[PRD86 074019]	[PRD86 094028]	
$D_s^+ \overline{D}{}^0$	2.3	0.3	
$D_s^+ D^0$	3.0	0.2	
$D^+\overline{D}{}^0$	32	1.3	
D^+D^0	0.10	0.008	

Experimentally challenging:

- Small branching fractions
- Small production cross section: $\frac{f_c}{f_u} \sim 0.8\%$
- Short lifetime
- High-multiplicity final state
- No evidence found in Run 1 dataset [NPB 930 (2018) 563]

-

→ < ∃→

The LHCb Detector

JINST 3 (2008) S08005

The LHCb Detector

JINST 3 (2008) S08005

Fionn Bishop, University of Cambridge

The LHCb dataset

• 2011:
$$1 \text{ fb}^{-1} @ \sqrt{s} = 7 \text{ TeV}$$

• 2012: $2 \text{ fb}^{-1} @ \sqrt{s} = 8 \text{ TeV}$
• 2015-18: $6 \text{ fb}^{-1} @ \sqrt{s} = 13 \text{ TeV}$ } Run 2

$$rac{\sigma(\textit{pp}
ightarrow \textit{B}, 13 \, {
m TeV})}{\sigma(\textit{pp}
ightarrow \textit{B}, 8 \, {
m TeV})} \sim 2$$

 \rightarrow Run 2 dataset 4x larger

イロト イ団ト イヨト イヨト

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Search for $B_c^+ \rightarrow DD$ decays

Fionn Bishop, University of Cambridge

 $B \rightarrow DD, 02/03/22$

315

→ < ∃→

Search for 16
$$B_c^+ \rightarrow D_{(s)}^{(*)+} D^{(*)0}$$
 decays

• 6
$$B_c^+ \rightarrow D_{(s)}^{(*)+} D^0$$
 channels

 Both fully and partially reconstructed (miss one or more neutral particles from D*) decays

$$D^{0} \to K\pi(\pi\pi), D^{+} \to K\pi\pi, D^{+}_{s} \to KK\pi$$
$$D^{*+} \to D^{0}\pi^{+}$$

■ Use 9 fb⁻¹ collected from 2011-2018 (Run 1+2)

• Measure or set limit on \mathcal{B} relative to $B^+ \to D\overline{D}^0$ $\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to DD)}{\mathcal{B}(B^+ \to D\overline{D}^0)} = \frac{N_{B_c^+ \to DD}}{N_{B^+ \to D\overline{D}^0}} \frac{\varepsilon_{B^+ \to D\overline{D}^0}}{\varepsilon_{B_c^+ \to DD}}$

- L0 Hardware Trigger
 - High E_T deposit in CALO
- HLT1
 - High quality track displaced from PV
- HLT2
 - Topological triggers: Candidates consistent with multibody *B* decay
 - Geometric and kinematic variables

 $B \rightarrow DD, 02/03/22$

Data selection

JHEP 12 (2021) 117

D candidates:

- Combine good-quality, high *p*^{*T*} tracks
- Incompatible with originating from PV
- PID requirements

Data selection

JHEP 12 (2021) 117

D candidates:

- Combine good-quality, high p_T tracks
- Incompatible with originating from PV
- PID requirements

B candidates:

- Combine two D candidates
- Good vertex quality

Single-charm and charmless backgrounds:

- D mass windows
- Minimum D lifetimes

Data selection

JHEP 12 (2021) 117

D candidates:

- Combine good-quality, high p_T tracks
- Incompatible with originating from PV
- PID requirements

B candidates:

- Combine two D candidates
- Good vertex quality

Single-charm and charmless backgrounds:

- D mass windows
- Minimum D lifetimes

Vetoes:

•
$$B^0_{(s)} \rightarrow D\pi^+(\pi^-\pi^+)$$
 decays
• D^+/D^+_s cross-feed

Simulation

- Simulation for:
 - Acceptance+selection efficiencies
 - MVA training
 - Model mass distributions

- Corrections:
 - PID corrections: Calibration samples
 - Momentum scale+resolution
 - B kinematics

Simulation

- *B*⁺:
 - Correct to match (p_T(B⁺), y(B⁺)) in background-subtracted data
 - Gradient Boosted Reweighter
- *B*⁺_c:
 - Linear dependence of ^{f_c}/_{f_u} on (p_T(B), y(B)) has been measured
 - Correct so that N(B⁺_c)/N(B⁺) matches

- Boosted Decision Tree (BDT) further reduces combinatorial background
 - Signal: Simulated signal
 - Background: Sideband data in extended D mass window
 - Kinematic and PID variables
- Discard lowest purity data
- Split remainder into low/medium/high samples
 - Splitting enhances signal sensitivity
 - Include low-purity data to constrain background shape

- Fully reconstructed signal + normalisation
 - Shape parameters from fit to simulation
 - + freedom for width, mass
- Partially reconstructed signal
 - $\blacksquare \text{ Missing } \pi^0 \text{ or } \gamma$
 - Kernel Density Estimate of simulation
- Small $B^+ \rightarrow KK\pi \overline{D}^0$ yield constrained from D_s^+ sideband data
- Combinatorial

・ロト ・四ト ・ヨト ・ヨト

 $B \rightarrow DD, 02/03/22$

문 문

- Simultaneous fit to BDT samples and D⁰ final states
- Sharing signal strength and nuisance parameters

문 문

.

• Measure relative to abundant $B^+ \to D\overline{D}^0$ $f_c \mathcal{B}(B_c^+ \to DD) = \frac{N_{B_c^+ \to DD}}{N_{B_c^+ \to DD}} \varepsilon_{B^+ \to D\overline{D}^0}$

$$\frac{1}{f_u}\frac{1}{\mathcal{B}(B^+\to D\bar{D}^0)} = \frac{1}{N_{B^+\to D\bar{D}^0}}\frac{1}{\varepsilon_{B_c^+\to DD}}$$

- Efficiency (ε) ratio from simulation
- Systematics either as fractional uncertainties or freedom in model parameters
 - Dominant systematics: Signal and background shapes, B⁺_c kinematic correction

JHEP 12 (2021) 117

JHEP 12 (2021) 117

- 3.4 σ evidence for $B_c^+ \rightarrow D_s^+ \overline{D}^0$
- External inputs for $\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)$ and $\frac{f_c}{f_u}$
- ${\cal B}(B_c^+\!\to D_s^+ \overline D{}^0) =$
 - $\begin{array}{c}(3.5^{+1.5+0.3}_{-1.2-0.2}\pm1.0)\times10^{-4}\\(\text{stat, sys, ext})\end{array}$
 - Two orders of magnitude larger than SM prediction

-

 $\mathcal{B}(B_c^+ \rightarrow DD)$ - Upper limits

- Upper limits on *B* at 90(95)% CL
- Use frequentist CLs method implemented in GammaCombo

$$\begin{split} \mathcal{B}(B_c^+ &\to D_s^+ \overline{D}{}^0) < 7.2 \, (8.4) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D_s^+ D^0) < 3.0 \, (3.7) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^+ \overline{D}{}^0) < 1.9 \, (2.5) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^+ D^0) < 1.4 \, (1.8) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^{*+} \overline{D}{}^0) < 3.8 \, (4.8) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^{*+} D^0) < 2.0 \, (2.4) \times 10^{-4} \end{split}$$

문 문

< ∃ →

plus ten upper limits on $B_c^+ \rightarrow D^{(*)}D^{(*)}$ using partially reconstructed decays

$$\begin{split} & \mathcal{B}(B_c^+ \to D_s^{*+} \overline{D}{}^0) < 5.3(5.7) \times 10^{-4} \\ & \mathcal{B}(B_c^+ \to D_s^{*+} D^0) < 0.9 (1.0) \times 10^{-3} \\ & \mathcal{B}(B_c^+ \to D_s^+ \overline{D}{}^{*0}) < 5.3 (5.7) \times 10^{-4} \\ & \mathcal{B}(B_c^+ \to D_s^+ D^{*0}) < 6.6 (8.4) \times 10^{-4} \\ & \mathcal{B}(B_c^+ \to D^+ \overline{D}{}^{*0}) < 6.5 (8.2) \times 10^{-4} \\ & \mathcal{B}(B_c^+ \to D^+ D^{*0}) < 3.7 (4.6) \times 10^{-4} \\ & \mathcal{B}(B_c^+ \to D_s^{*+} \overline{D}{}^{*0}) < 1.3 (1.5) \times 10^{-3} \\ & \mathcal{B}(B_c^+ \to D_s^{*+} D^{*0}) < 1.3 (1.6) \times 10^{-3} \\ & \mathcal{B}(B_c^+ \to D^{*+} \overline{D}{}^{*0}) < 1.0 (1.3) \times 10^{-3} \\ & \mathcal{B}(B_c^+ \to D^{*+} D^{*0}) < 7.7 (8.9) \times 10^{-4} \end{split}$$

CP violation in $B^{-/0} \rightarrow DD$ decays

Fionn Bishop, University of Cambridge

 $B \rightarrow DD$, 02/03/22

-

$$\mathcal{A}^{CP} = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B} \to \overline{f})}$$

Neutral meson oscillations:

$$\Gamma(t; B^0 \rightarrow D^+D^-) \propto (1 + q_b[S\sin(\Delta mt) - C\cos(\Delta mt)])$$

 $q_b = \pm 1$: *b* charge at production Δm : Mass difference between eigenstates

CP violation in mixing and decay:

$$\Gamma(t; B^0 \to D^{*\pm}D^{\mp}) \propto (1 \pm \mathcal{A}^{CP})(1 + q_b[\mathcal{S}^{\pm}\sin(\Delta mt) - \mathcal{C}^{\pm}\cos(\Delta mt)])$$

- Interference between:
 - $b \rightarrow c$ in tree
 - $b \rightarrow u$ in penguin
- \rightarrow Small \mathcal{A}^{CP}
 - $\begin{array}{l} \bullet \ \mathcal{A}^{CP}(B^- \to D^- D^0) \sim 1\% \\ \bullet \ \mathcal{A}^{CP}(B^- \to D_s^- D^0) \sim 0.1\% \end{array} \end{array}$

- BSM models can enhance ACP
 - e.g. 4th generation quarks [IJTP 55 5290]
 - SUSY [PRD 79 055004]

 Isospin symmetry predicts relations between CP observables

$$\mathcal{A}^{CP}(B^- \to D_s^- D^0) \approx \\ \mathcal{A}^{CP}(\overline{B}^0 \to D_s^- D^+)$$
$$\mathcal{A}^{CP}(B^- \to D^- D^0) \approx \\ C(B^0 \to D^- D^+)$$

 Deviations could indicate NP

[PRD 91 034027 (2015)]

Quantity	World average	Measurements		
$\mathcal{A}^{CP}(B^- \rightarrow D_s^- D^0)$	$-0.4\pm0.7\%$	[LHCb I]		
$\mathcal{A}^{CP}(B^- \rightarrow D^- D^0)$	$1.6\pm2.5\%$	[LHCb I, Belle I, BaBar]		
$\mathcal{A}^{CP}(B^- ightarrow D^{*-}D^0)$	$-6\pm13\%$	[BaBar]		
$\mathcal{A}^{CP}(B^- \rightarrow D^- D^{*0})$	$13\pm18\%$	[BaBar]		
$\mathcal{A}^{CP}(B^- \to D^{*-}D^{*0})$	$-15\pm11\%$	[BaBar]		
$\mathcal{A}^{CP}(B^0 \rightarrow D^{*+}D^-)$	$1.3\pm1.4\%$			
$C(B^0 \rightarrow D^{*+}D^-)$	-0.02 ± 0.08			
$S(B^0 \rightarrow D^{*+}D^-)$	-0.83 ± 0.09	[LHCb II, Belle I, BaBar]		
$C(B^0 \rightarrow D^{*-}D^+)$	-0.03 ± 0.09			
$S(B^0 ightarrow D^{*-}D^+)$	-0.80 ± 0.09			
$C(B^0 \rightarrow D^{*+}D^{*-})$	$\textbf{0.01}\pm\textbf{0.09}$	Rollo L. RoRoy		
$S(B^0 ightarrow D^{*+}D^{*-})$	-0.59 ± 0.14	[Delle I, DaDar]		
$C(B^0 ightarrow D^+ D^-)$	-0.22 ± 0.24	[LUCh L Rollo L RoRoy]		
$S(B^0 \rightarrow D^+ D^-)$	$-0.76\substack{+0.15\\-0.13}$	[LITCD I, Delle I, Dabar]		

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の Q @

Quantity	World average	Measurements	
$\mathcal{A}^{CP}(B^- o D_s^- D^0)$	$-0.4\pm0.7\%$	[LHCb I]	
$\mathcal{A}^{CP}(B^- ightarrow D^- D^0)$	$1.6\pm2.5\%$	[LHCb I, Belle I, BaBar]	
$\mathcal{A}^{CP}(B^- \rightarrow D^{*-}D^0)$	$-6\pm13\%$	[BaBar]	
$\mathcal{A}^{CP}(B^- ightarrow D^- D^{*0})$	$13\pm18\%$	[BaBar]	
$\mathcal{A}^{CP}(B^- \to D^{*-}D^{*0})$	$-15\pm11\%$	[BaBar]	
$\mathcal{A}^{CP}(B^0 \rightarrow D^{*+}D^-)$	$1.3\pm1.4\%$		
$C(B^{0} \rightarrow D^{*+}D^{-})$	-0.02 ± 0.08		
$S(B^0 \rightarrow D^{*+}D^-)$	-0.83 ± 0.09	[LHCb II, Belle I, BaBar]	
$C(B^0 \rightarrow D^{*-}D^+)$	-0.03 ± 0.09		
$S(B^0 ightarrow D^{*-}D^+)$	-0.80 ± 0.09		
$C(B^0 \rightarrow D^{*+}D^{*-})$	0.01 ± 0.09	[Rollo L. RoRoy]	
$S(B^0 ightarrow D^{*+}D^{*-})$	-0.59 ± 0.14	[Delle I, DaDar]	
$C(B^0 ightarrow D^+ D^-)$	-0.22 ± 0.24	[LUCh L Rollo L RoPort	
$S(B^0 \rightarrow D^+ D^-)$	$-0.76\substack{+0.15\\-0.13}$	[Lincon, belle I, babar]	

▲□▶▲□▶▲□▶▲□▶ ▲□▲ 釣A@

$$\mathcal{L}^{CP}(B^- \to DD)$$

$$\mathcal{A}^{CP} = \mathcal{A}_{raw} - \mathcal{A}_P - \mathcal{A}_D$$

 Raw asymmetry: Fit to selected data

$$\mathcal{A}_{raw} = \frac{N(B^-) - N(B^+)}{N(B^-) + N(B^+)}$$

 Correct for production and detection asymmetries: Calibration samples

$$\mathcal{A}_{P} = \frac{\sigma(B^{-}) - \sigma(B^{+})}{\sigma(B^{-}) + \sigma(B^{+})}$$
$$\mathcal{A}_{D} = \frac{\varepsilon(B^{-}) - \varepsilon(B^{+})}{\varepsilon(B^{-}) + \varepsilon(B^{+})}$$

$K\pi$ detection asymmetry

- \blacksquare Largest detection asymmetry: $\sim 1\%$
- Charge asymmetry of kaon-detector interactions
- Function of kinematics
 - Most strongly of momentum
 - Also

 Aue to amount of material passed through
- Difference in raw asymmetry between $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D^+ \rightarrow K^0_S \pi^+$ samples

[LHCb-PAPER-2014-013]

- Smaller detection asymmetries:
 - Pion tracking
 - PID response
 - L0 trigger efficiency

[LHCb-PAPER-2016-013]

Production asymmetries

- *pp* collisions favour production of $B^+ = \overline{b}u$ over B^-
- \rightarrow Production asymmetry
 - Larger at higher η , lower p_T
 - Measured in decays with known \mathcal{A}^{CP}
 - $\blacksquare B^+ \to \overline{D}{}^0 \pi^+$
 - $\blacksquare B^+ \to J/\psi K^+$

315

$$\mathcal{A}^{CP}(B^- o D_s^- D^0) = (-0.4 \pm 0.5(stat) \pm 0.5(sys))\%$$

 $\mathcal{A}^{CP}(B^- o D^- D^0) = (2.3 \pm 2.7(stat) \pm 0.4(sys))\%$

- Dominant systematics:
 - Production asymmetry
 - $K\pi$ detection asymmetry
- First measurement of $\mathcal{A}^{CP}(B^- \to D_s^- D^0)$
- 3 imes improvement on $\mathcal{A}^{CP}(B^- \to D^- D^0)$

$\mathcal{A}^{CP}(B^- \to DD)$

- Update with Run 2 data
- Add $D^{*-}D^0$ channel
- Measure decays with one missing particle

ightarrow 7 decays total

문제 제품에 문법

Table 1: Statistical and systematic uncertainties on $\mathcal{A}^{\mathcal{O}}$. Statistical uncertainty is entirely from \mathcal{A}_{raw} . The systematic uncertainty is dominated by uncertainty on the production asymmetry.

Decay	Run1+2	PDG	
$B^- ightarrow D_s^- D^0$	$(X \pm 0.2 \pm 0.3)\%$	$(-0.4 \pm 0.7)\%$	
$B^- ightarrow D_s^{*-} D^0$	$(X \pm 1.1 \pm 0.3)\%$	-	
$B^- ightarrow D_s^- D^{*0}$	$(X \pm 1.7 \pm 0.3)\%$	-	
$B^- ightarrow D^- D^0$	$(X \pm 1.0 \pm 0.3)\%$	$(1.6\pm2.5)\%$	
$B^- ightarrow D^{*-} D^0$	$(X\pm1.6\pm0.3)\%$	$(-6\pm13)\%$	
$B^- ightarrow D^- D^{*0}$	$(X \pm 3.3 \pm 0.3)\%$	$(13\pm18)\%$	
$B^- ightarrow D^{*-} D^{*0}$	$(X \pm 2.7 \pm 0.3)\%$	$(-15\pm11)\%$	

Dominant systematics:

- Contribution of $\mathcal{A}^{CP}(B^+ \to J\!/\!\psi K^+)$ to \mathcal{A}_P
- Calibration sample size for $K^-\pi^+$ detection asymmetry
- Combinatorial model (partially reconstructed)

・ロト ・ 同 ・ ・ ヨ ト ・ 三 三 ・ りゅつ

Quantity	World average	Measurements		
$ \begin{array}{l} \mathcal{A}^{CP}(B^- \to D^s D^0) \\ \mathcal{A}^{CP}(B^- \to D^- D^0) \\ \mathcal{A}^{CP}(B^- \to D^{*-} D^0) \\ \mathcal{A}^{CP}(B^- \to D^{} D^{*0}) \\ \mathcal{A}^{CP}(B^- \to D^{*-} D^{*0}) \end{array} $	$\begin{array}{c} -0.4\pm 0.7\%\\ 1.6\pm 2.5\%\\ -6\pm 13\%\\ 13\pm 18\%\\ -15\pm 11\%\end{array}$	[LHCb I] [LHCb I, Belle I, BaBar] [BaBar] [BaBar] [BaBar]		
$\mathcal{A}^{CP}(B^0 \to D^{*+}D^-)$ $C(B^0 \to D^{*+}D^-)$ $S(B^0 \to D^{*+}D^-)$ $C(B^0 \to D^{*-}D^+)$ $S(B^0 \to D^{*-}D^+)$	$\begin{array}{c} 1.3 \pm 1.4\% \\ -0.02 \pm 0.08 \\ -0.83 \pm 0.09 \\ -0.03 \pm 0.09 \\ -0.80 \pm 0.09 \end{array}$	[LHCb II, Belle I, BaBar]		
$C(B^0 ightarrow D^{*+}D^{*-})$ $S(B^0 ightarrow D^{*+}D^{*-})$ $C(B^0 ightarrow D^+D^-)$	$0.01 \pm 0.09 \ -0.59 \pm 0.14 \ 0.22 \pm 0.24$	[Belle I, BaBar]		
$S(B^0 \rightarrow D^+D^-)$	-0.22 ± 0.24 $-0.76^{+0.15}_{-0.13}$	[LHCb I, Belle I, BaBar]		

$\mathcal{A}^{CP}(B^0 o DD)$

- 'Flavour tag' candidates as B⁰ or B
 ⁰ based on rest of event
- Fit to background-subtracted decay time distribution
- $ightarrow B^0$ \overline{B}^0 asymmetry as a function of decay time

• (almost) CP eigenstate \rightarrow Minimal/no detector asymmetry

$$\begin{split} \mathcal{S}_{D^*D} &= -0.861 \pm 0.077 \pm 0.019 \\ \Delta \mathcal{S}_{D^*D} &= 0.019 \pm 0.075 \pm 0.012 \\ \mathcal{C}_{D^*D} &= -0.059 \pm 0.092 \pm 0.020 \\ \Delta \mathcal{C}_{D^*D} &= -0.031 \pm 0.092 \pm 0.016 \\ \mathcal{A}_{D^*D} &= 0.008 \pm 0.014 \pm 0.006 \\ (\mathcal{S}_{D^*\pm D^{\mp}} &= \mathcal{S}_{D^*D} \pm \Delta \mathcal{S}_{D^*D}) \\ \text{Run 1+2 data [JHEP 03 (2020) 147]} \end{split}$$

$$\mathcal{S}_{D^+D^-} = -0.54^{+0.17}_{-0.16} \pm 0.05$$

$$\mathcal{C}_{D^+D^-} = 0.26^{+0.18}_{-0.17} \pm 0.02$$

Run 1 data [PRL 117 261801]

- Dominant systematics:
 - Background subtractionFlavour tagging

Quantity	World average	Measurements		
$\mathcal{A}^{CP}(B^- \rightarrow D_s^- D^0)$	$-0.4\pm0.7\%$	[LHCb I]		
$\mathcal{A}^{CP}(B^- \rightarrow D^- D^0)$	$1.6\pm2.5\%$	[LHCb I, Belle I, BaBar]		
$\mathcal{A}^{CP}(B^- ightarrow D^{*-}D^0)$	$-6\pm13\%$	[BaBar]		
$\mathcal{A}^{CP}(B^- \rightarrow D^- D^{*0})$	$13\pm18\%$	[BaBar]		
$\mathcal{A}^{CP}(B^- \to D^{*-}D^{*0})$	$-15\pm11\%$	[BaBar]		
$\mathcal{A}^{CP}(B^0 \rightarrow D^{*+}D^-)$	$1.3\pm1.4\%$			
$C(B^0 \rightarrow D^{*+}D^-)$	-0.02 ± 0.08			
$S(B^0 \rightarrow D^{*+}D^-)$	-0.83 ± 0.09	[LHCb II, Belle I, BaBar]		
$C(B^0 \rightarrow D^{*-}D^+)$	-0.03 ± 0.09			
$S(B^0 ightarrow D^{*-}D^+)$	-0.80 ± 0.09			
$C(B^0 \rightarrow D^{*+}D^{*-})$	$\textbf{0.01}\pm\textbf{0.09}$	Rollo L. RoRoy		
$S(B^0 ightarrow D^{*+}D^{*-})$	-0.59 ± 0.14	[Delle I, DaDar]		
$C(B^0 ightarrow D^+ D^-)$	-0.22 ± 0.24	[LUCh L Rollo L RoRoy]		
$S(B^0 \rightarrow D^+ D^-)$	$-0.76\substack{+0.15\\-0.13}$	[LITCD I, Delle I, Dabar]		

イロト イ団ト イヨト イヨト

- Beauty to doubly open charm decays provide access to SM and BSM physics
- $\blacksquare B_c^+ \to DD$
 - Improved understanding of rare B⁺_c meson
 - Sensitivity to CKM phase γ
 - Search for 16 $B_c^+ \rightarrow DD$ decays [JHEP 12 (2021) 117]
 - 3.4 σ evidence for $B_c^+ \rightarrow D_s^+ \overline{D}^0$

• CP violation in $B \rightarrow DD$

- Sensitivity to BSM physics if uncertainties reduced
- LHCb measurements on *A^{CP}(B⁻/B⁰)* presented
- + Prospects for *B*⁻ asymmetries with Run 2 data

- Run 3: 5× higher instantaneous luminosity
 → At least 25 fb⁻¹
- Removal of hardware trigger
- Real-time analysis and calibration in software triggers
- $\label{eq:states} \begin{array}{l} \rightarrow \ \sim 3 \times \ \text{increase in trigger} \\ \text{efficiency in Run 3} \end{array}$
- $ightarrow \sim 9 imes$ more data!
 - Confirm or refute evidence for $B_c^+ \to D_s^+ \overline{D}{}^0$ with under one year of data
 - $3 \times$ reduction in uncertainties on \mathcal{A}^{CP}

Backup

Fionn Bishop, University of Cambridge

 $B \rightarrow DD$, 02/03/22

< ∃ > < ∃

Final state	$D_{s}^{+}D^{0}$		$D^{+}D^{0}$		$D^{*+}D^{0}$	
	Run 1	$\operatorname{Run}2$	$\operatorname{Run} 1$	$\operatorname{Run}2$	$\operatorname{Run} 1$	$\operatorname{Run}2$
B_c^+ signal shape	9.4	3.8	4.8	5.3	2.8	3.9
B_c^+ production spectrum	3.7	2.4	3.9	2.4	4.2	2.9
B^+ production spectrum	0.5	0.9	0.6	1.0	0.6	1.1
Hit resolution parameterisation	_	1.5	_	1.2	_	2.2
R simulation sample size	1.2	1.0	1.4	1.1	1.5	1.5
$R'_{(+,0)}$ simulation sample size	1.4	0.9	2.1	1.2	1.1	1.1
R'' simulation sample size	1.5	0.8	1.7	0.9	_	_
B_c^+ lifetime	1.3	1.4	1.3	1.3	2.1	2.6
PID efficiencies	1.6	1.2	2.8	0.8	2.2	1.4
Multiple $B^+_{(c)}$ candidates	0.4	0.4	0.6	0.5	1.4	1.2
Data-simulation differences	0.1	0.1	0.1	0.1	0.1	0.2
$B^+ \rightarrow \overline{D}{}^0 K^+ K^- \pi^+$	0.7	0.5	-	-	-	-
$\mathcal{B}(D^{*+} \to D^+ X^0)$	-	-	1.5	1.5	-	-
R total	10.4	5.3	7.2	6.6	6.3	6.5
$R'_{(+,0)}$ total	4.6	3.7	5.7	3.8	5.5	5.0
$R^{\prime\prime}$ total	4.6	3.7	5.5	3.7	_	_

 $B \rightarrow DD, 02/03/22$

イロト イヨト イヨト イヨト

- 5× higher instantaneous luminosity
 - \rightarrow At least 25 fb⁻¹ in Run 3
- Major upgrades
 - PID and tracking detectors
 - Electronics
 - Data acquisition system

Prospects for Run 3

- Removal of hardware trigger
- Real-time analysis and calibration in software triggers
- $\rightarrow~\sim 3\times$ increase in trigger efficiency in Run 3

イロト (母) (ヨト (ヨト)ヨヨ うのつ