

ATLAS Phase II Upgrade How did we end up with this? **Tony Affolder**

Santa Cruz Institute for Particle Physics

University of California, Santa Cruz

With inputs from Craig Buttar, Markus Elsing, Claudia Gemme,….

Birmingham Particle Physics Group Seminar

27th April 2022

ATLAS

EXPERIMENT

ATLAS & the LHC

- Large Hadron Collider (LHC) Circumference: 27 km
	- 1600 super conducting magnets
	- Center-of-mass energy: 13.6 TeV
- ATLAS experiment is a 4π coverage, "general-purpose" detector
	- Discovery + precision physics

Pixel Detector TPT Track

- HL-LHC will provide a 10-fold in increase of integrated luminosity, enabling a broad program covering all areas of hadron collider physics of ATLAS
	- **Installation of upgrade begins in 2026**
	- Operations commence in late-2029 for about ten years
- Involves upgrades to the accelerator complex as well as all experiments

- HL-LHC will provide a 10-fold in increase of integrated luminosity, enabling a broad program covering all areas of hadron collider physics of ATLAS
	- **Installation of upgrade begins in 2026**
	- Operations commence in late-2029 for about ten years
- Involves upgrades to the accelerator complex as well as all experiments

ATLAS HL-LHC Physics Program

• Highlights include:

- Measurement of Higgs boson properties: couplings, mass, width, self-coupling
- Precision electroweak measurements: vector boson scattering, triboson couplings, rare processes
- Searches for Beyond Standard Model physics: SUSY, dark matter, new resonances, long-lived particles
- Flavor physics studies: rare bottom and top decays, constraints on CKM
- Recent public studies:
	- Sensitivity to H -> bb and cc in VH production [[ATL-PHYS-PUB-2021-039](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-039/)]
	- Sensitivity to WW production in photon-photon scattering [\[ATL-PHYS-PUB-2021-026\]](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-026/)

ATLAS HL-LHC Physics Program

• Highlights include:

- Measurement of Higgs boson properties: couplings, mass, width, self-coupling
- Precision electroweak measurements: vector boson scattering, triboson couplings, rare processes
- **Searches for Beyond Standard Model physics:** SUSY, dark matter, new resonances, long-lived particles
- **Flavor physics studies: rare bottom and top** decays, constraints on CKM
- Recent public studies:
	- Sensitivity to H -> bb and cc in VH production [[ATL-PHYS-PUB-2021-039](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-039/)]
	- Sensitivity to WW production in photon-photon scattering [\[ATL-PHYS-PUB-2021-026\]](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-026/)

ATLAS Phase-2 Upgrade

Upgraded Trigger and Data Acquisition System

- Single Level Trigger with 1 MHz output
- Improved 10 kHz Event Farm

Electronics Upgrades

- On-detector/off-detector electronics upgrades of LAr Calorimeter, Tile Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

High Granularity Timing Detector (HGTD)

- Precision time reconstruction (30 ps) with Low-Gain Avalanche Detectors (LGAD)
- Improved pile-up separation and bunch-by-bunch luminosity

Additional small upgrades

- Luminosity detectors (1% precision)
- HL-ZDC (Heavy Ion physics)

New Muon Chambers

- Inner barrel region with new RPCs, sMDTs, and TGCs
- Improved trigger efficiency/momentum resolution, reduced fake rate

Focus of this presentation

New Inner Tracking Detector (ITk)

- All silicon with at least 9 layers up to $|\eta| = 4$
- Less material, finer segmentation

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSCRIPTION** Science 7

- I am a detector nomad going to where the next big build is:
	- \blacksquare KTeV \Leftrightarrow CDF \Leftrightarrow CMS \Leftrightarrow LHCb \Leftrightarrow ATLAS
- I am interested (love) the technology which enables particle physics, in particular trackers.
	- I care about physics outcomes, but really not an expert in data analysis
- This talk will align strongly to my specialties: sensors, readout electronics, modules (packaging)
	- Many, many more interesting technologies and issues than I can cover here
- And this is all been extremely simplified
	- We could have spent a whole seminar on each slide
- The goal of this seminar to is cover the main enabling technologies of the ATLAS upgrade tracker (ITk), describe the drivers for the layout and the issues we had to solve.
	- And a short look to the future

What does a tracking detector do?

• Tracking detectors

UC SANTA CRUZ

- Measure position and momentum of charged particles
	- \triangleright Transverse momentum (p_T) From curvature of track
	- \triangleright Impact Parameter (d₀) x-y distance of closest approach of beam approach
	- $\ge Z_0$ Location along beam of closest approach point
	- $\triangleright \phi$ and η (-ln tan (θ /2)) Angles of track in x-y plane and along z respectively
- A track is the reconstructed trajectory of a charged particle made by connecting hits from various layers
	- **Pattern recognition is figuring out which hits go to** what tracks (charged particles)

 \otimes B

- Vertexes
	- Location of Collisions (Primary)
	- Decay of Particles with Lifetime (Secondary/Tertiary)
- In search for new physics, reconstructing particles with bottom and charm quarks and τ mesons are critical
- Fake tracks (fakes) are a track that is a mis- constructed particle trajectory. Either from:
	- Merging two tracks
	- \triangleright Mis-assigning some hits
	- \triangleright Random combination of hits (unlikely)
- Fakes can have surprisingly large impact on the ability to reconstruct displaced vertices from decays of charm, bottom and tau particles

• Pixel Systems

- Sensitive silicon sensor elements (nearly) square $>50\times50$ µm² (some 25 $\times100$ µm²)
- Near beam where finer segmentation needed to separate tracks
	- \triangleright Drives d₀ and z₀ resolutions

- Strip System
	- Sensitive silicon sensor elements long and skinny
		- 75.5 µm x 2-6 cm
	- Covers larger area, further from beam
		- Drives momentum and η resolutions

Hybrids and Modules

Pixel Quad Module

• Hybrid: Polyimide-Copper flexible circuit which can hold multiple custom ASICs and SMDs

• Module: smallest sensitive unit of a tracker. Consists of sensor, hybrid(s), support circuits

Strip Long Strip Module

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONNERGY** Science 12

- Peak Luminosity: 7×10^{34} cm⁻² s⁻¹ (x7 now)
- Average Pile-Up:
	- Number of collisions per bunch crossing (every 40 ns)
	- HL-LHC: 200 (x5)
		- Compromises ability to assign hits to tracks
- Total Fluence: up to 2×10^{16} n_{eq} cm² (\times 10)
	- Number of 1 MeV Neutron Equivalent **Particles**
		- \triangleright Insert into TRIGA test nuclear reactor 50 minutes to reach dose

- At the beginning of the proposal for the HL-LHC, it wasn't clear silicon sensors would be radiation hard enough to be used in tracker
	- [RD50](https://rd50.web.cern.ch/) collaboration created by CERN to develop required technology
- **Bad news**: most developments in adding controlled contaminants and try different silicon crystal growth/processing didn't do a lot
- **Good news**: n-type silicon used in current pixel systems turned out to be much more radiation tolerant than first thought
	- Rule of thumb (strips): for efficient tracking signal-to-noise > 8-10:1 required
		- Noise: 500-1000 e- (strips)
	- Rule of thumb (pixels): for efficient tracking signal-
to-noise > 2.5-4 required
		- \geq Threshold: 600-1200 e- (pixels)

UC SANTA CRUZ

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSIDERGY** Office of 15

- At the beginning of the proposal for the HL-LHC, it wasn't clear silicon sensors would be radiation hard enough to be used in tracker
	- [RD50](https://rd50.web.cern.ch/) collaboration created by CERN to develop required technology
- **Bad news**: most developments in adding controlled contaminants and try different silicon crystal growth/processing didn't do a lot
- **Good news**: n-type silicon used in current pixel systems turned out to be much more radiation tolerant than first thought
	- Rule of thumb (strips): for efficient tracking signal-to-noise > 8-10:1 required
		- Noise: 500-1000 e- (strips)
	- Rule of thumb (pixels): for efficient tracking signal-
to-noise > 2.5-4 required
		- \geq Threshold: 600-1200 e- (pixels)

- In addition to lose of signal, radiation has other impacts:
	- **Increased leakage current**
	- Annealing of damage sites
- Leakage current (power) depends strongly on temperature:
	- Factor of 2 per 7 C °
- Self-heating can lead to thermal runaway
	- **Leakage Current heats sensor which increases** leakage current…..
- Requires silicon sensors to operate and be kept at -10 to -20 C ° for HL -LHC
	- Studies in previous slide all in a -45 C ° chest freezer

Enabling Technologies (Cooling and Mechanics)

- $CO₂$ cooling made a comeback
	- First in AMS and LHCb VELO
	- And now all silicon-based upgrades
- Minimum temperature of -45 C° (triple point of $CO₂$)
- Lightweight structures utilizing thin walled titanium tubes clad in newly developed custom carbon products cools sensors to -15 to -30 C°
	- Pressures up to 143 bar in failure condition
	- Carbon foam, (Thermal) Pyrolytic **Graphite**

100 kW Demo Plant (Today)

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSCRIPTION** U.S. DEPARTMENT OF Office of 17

Design Requirements

A. Affolder (Santa Cruz) Birmingham Particle Physics Group Seminar **18** Bisher Arment of Science 18

- Occupancy: % of channels with a hit
	- Rule of thumb (Strips): <1% occupancy required for efficient pattern recognition
		- Computing and fake rate
- Current SCT: 80 µm x 12 cm
	- Needed to get to 2 -6 cm strip lengths based on peak luminosity
- Solution: 4 row bonding
	- Moved hybrids on top of sensor
		- Connected 2 rows to one set of strips and other 2 row to the next ones
- Made possible by ASIC technology (130 nm CMOS with "thick" metal layers for power)

Occupancy (Strips)

- Occupancy: % of channels with a hit Rule of thumb (Pixels): <0.1% occupancy required for efficient pattern recognition
- Current pixel detector: \sim 50×400 µm² (50×250 µm² beam layer)
- Developed process to allow for bump bonding in $50 \times 50 \mu m^2$
	- Difficulties included:
		- Alignment of sensor to ASIC
		- **> Thermal mismatch during bumping process**
			- Made worse by thin materials (sensor, ASICs)

Occupancy (Pixels)

270

- Number of layers driven by reconstruction time & resources as well as fake rates
	- Event complexity leads to significant increased to reconstruction time/computing resources
- Adding layers over-constrains track and makes hit linking easier
	- At the cost of efficiency, material and size

- by first two layers.
	- Specifically: radii, segmentation, material
- Many constraints:
	- More radiation/track density at lower radius
		- Chip fixed size so overlaps larger at lower radius (higher material)
	- **Beam pipe set by CERN**
- Pixel cell size (25x100 µm2)
- Innermost radii at 34mm

Innermost layer

Pixel Mechanics

- Increasing tracking coverage to
|η|<4 important to physics goals
	- Pile-up rejection, lepton acceptance, E_T miss resolution
	- For pixel only tracking, >9 hits required
- Advance mechanics made this possible
	- **Inclined modules: reduce module** requirements (30% in layer) with transition gap at | η|>2
		- \triangleright At the cost of complexity
	- Rings allow for optimization of coverage

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSINGLY** Science 25

for PARTICLE PHYSICS **UC SANTA CRUZ**

ITk vs ID Layout

for PARTICLE PHYSICS

UC SANTA CRUZ

A. Affolder (Santa Cruz) Birmingham Particle Physics Group Seminar Concernsive Concernsive Science 27

Strip Layout

Staves are fairly simple Petals complicated trapezoidal geometry needed for radial strips without overlap and balance occupancy

A. Affolder (Santa Cruz)

Physics

Grand Control of Control Control of Control

Particle

ngham

1.4 m

Office of 28 Science

- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting Hit Requirements

-
- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting hit requirements
		- **>Occupancy**

- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting hit requirements
		- **>Occupancy**
		- Material reduction

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar Bullet CONTINERGY** Science 31

- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting hit requirements
		- **>Occupancy**
		- Material reduction
		- **>Improved impact parameter**

- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting hit requirements
		- **>Occupancy**
		- Material reduction
		- **>Improved impact parameter**
		- **>Increased η coverage**

- Layout meets design goals
	- Same or better than current ID even in this extreme environment
		- Meeting hit requirements
		- Occupancy
		- \triangleright Material reduction
		- **Improved impact parameter**
		- Increased η coverage
		- Decreased fake rate
			- Less holes in coverage, more layers

Challenges (Services)

- Current detector has individual power/clock/command services per module
	- Fills all available space
- New detector has many more modules, larger area,…
	- **Individual powering cannot fit and would** have extremely large power losses in cables
- Services have to be multiplexed or manifolded
	- Pixels/Strips came two different power solutions

Current Inner Detector Type 2 Services

Strip Powering - DC-DC Converter SATLAS **UC SANTA CRUZ**

- 14 modules powered on a common bus
- bPOL12V converts from delivered 11 V to 1.5 V for module powering
	- \triangleright Efficiency of 72% at operating point
- Cable plant heat loses go as 1^2R
	- Reduction by factor of 28
		- \triangleright (Conversion ratio \times efficiency)²
- Complications:
	- DC-DC convertors are noisy (high frequency switching)
		- \triangleright Much development required for light-weight EM shielding and conducted noise reduction.
	- Can not measure V or I per module at power supply
		- > Added AMACStar for monitoring
	- As bias on another common bus, developed a custom HV switch to disable individual modules

bPOL12V

- Rad-hard buck converter
- Custom flat air-core coil
- 0.1 mm Al shield-box to prevent EM noise leakage

AMACStar

- Control/interlock functionality
- Measurements of temperatures, currents, voltages (LV/HV)

HV Switch

- Connect/disconnect HV to sensor (in case of faulty sensor)
- GaNFET with 600 V rating

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar Bullet Concert Science** 36

Pixel Serial Powering

aka "Fancy Christmas Lights"

- Powering modules serially with around 1000 chains from 3 -14 modules
	- Current flows from one module to next
		- \triangleright Reduced number of supply lines, less material
		- \triangleright Chips on a module powered in parallel
	- Power dissipation in services less in services than with parallel powering (30 kW vs 250 kW)
	- Radiation hard on -chip shuntLDO allows regulation of voltage on chip
		- \triangleright Excess current needs to be supply to accommodate variation due to chip activity (hits)
- Complications
	- Each module on different potential \rightarrow AC coupling of data lines
	- HV reduces down the chain by the LV voltage drop per module
	- Need to add monitoring chip to measure voltage drops and temperature of individual modules

3D Pixel Sensors

-HV

- 3d sensors have columns etched through sensors for implants
	- Allows for lower bias voltage for same collected charge
		- $\frac{1}{2}$ Thin active substrate (150 µm)
	- Factor of 9 power advantage relative to planar
		- $> 10 \text{ mW cm}^2 (3d)$
		- \geq ~90 mW cm⁻² (planar)
- 25x100 μ m² for L0 barrel and 50x50 μ m² for L0 rings
- Much more difficult to manufacture (reactive ion etching)
	- Columns make sensors fragile
		- \triangleright Requires inactive, carry wafer of 100 μ m
- Greater than 99% efficiency at end-of- lifetime

Current Status

Pixel Sensors and FE Electronics

- ITkPixV1 pixel FE chip: Joint ATLAS-CMS effort (RD53) using TSMC 65 nm
	- Full-size prototype ASICs $(2×2.2 \text{ cm}^2)$
	- 153,600 pixels per chip
		- ≥ 1 MHz readout

UC SANTA CRUZ

- \triangleright Low threshold: ~600 e-
- Performs well after irradiation.
	- \triangleright Average chip yield of 75%
- Sensors with 50×50 μ m² pixels in 3D and planar technologies (25×100 µm2 3D inner barrel layer)
	- Pre-production 3D sensors in hand (67% yield)
	- **Pre-production planar sensors order being** finalized
- First RD53A and ITkPixV1 electrical modules assembled and under-test

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar Conservation Conservation** Science 40

Pixel Mechanics/Systems

- Much progress has been made of mechanics and services
	- Full-scale thermal test of local mechanics met specifications
		- Pre-production of localmechanics starting
	- 8 quad-module long serialpower chain under test
	- First prototype services/cables of final design in hand

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar A. Affolder (Santa Cruz)** Office of 41

Strip ASICs

Prototype ABCStar without enhanced triplication

Pre-production ABCStar with triplication disabled

Pre-production ABCStar with triplication enabled had no measured SEUs

[ITK-2021-002](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2021-002)

Pre-production HCCStar & AMACStar

- The three Strip ASICs went through extensive re-design to significantly increase triplication of logic/controls/clocks:
	- Protection against Single Event Effects (SEE): SE Upsets, SE Threshold, SE Latch-up
		- \triangleright Effects from ionizing particles passing through ASICS
	- ABCStar (front end), HCCStar (hybrid controller), AMACStar (analog monitor & control)
- All three ASICs has been SEE tested in heavy-ions and protons with excellent performance
	- Superb yield in pre-production: 92% (ABCStar), 95+% (HCCStar, AMACStar)
	- ABCStar production order placed

Strip Modules/Mechanics

- 20% of production sensors in hand and tested
- Huge amount of progress in modules & mechanics
	- First electrical petal complete (13 hybrid, 9 module types)
	- Irradiated short-strip modules with production ABCStar had wide operating window after 150% maximum fluence
- Hybrid and modules in pre-production
	- Performance, yields and throughput as expected
- Local mechanics also in pre-production
	- Endcap petal cores assembled successfully in industry
- Global mechanics are in production
	- Most elements nearing completion in end-cap

For next hadron collider, we will need another factor of 10 radiation hardness, increased segmentation, larger size,…

- ITk Strip detector at limits of technology
	- **Segmentation**
	- Noise
		- Smaller feature size CMOS has worse analogue performance
	- **Radiation tolerance**
	- Size: Takes a collaboration of 20+ institutes 3 years to build
- ITk Pixel detector at limits of technology
	- Segmentation
	- Radiation tolerance of readout ASICs
	- \bullet Cooling (CO₂)
	- Size: take world-wide capacity of bump bonding of thinned devices for 2 years

Need to get started on the next 20 year cycle of technology development

- Monolithic Active Pixels (MAPs) could be the solution
	- Sensors and readout electronics produced in one device using commercial CMOS process
	- Driven by consumer and industrial imaging market
	- Devices can be thinned to $25-100 \mu m$.
	- Segmentation as fine as $20\times20~\mu m^2$
- Biggest current system: ALICE ITS2
	- \cdot 10 m² active silicon area, 12.5×10⁹ pixels
- Development of this technology for future electron and proton colliders a priority of the particle physics community
	- **[2021 ECFA Detector Research and Development](http://cds.cern.ch/record/2784893/files/ECFA%20Detector%20R%26D%20Roadmap.pdf?version=1)** Roadmap, DOE Basic Research Needs for High [Energy Physics Detector Research & Development](https://doi.org/10.2172/1659761) [and 2021 DOE "Snowmass" Particle Physics](https://snowmass21.org/instrumentation/tracking) Community Planning Exercise

Depleted MAPS (DMAPS) detector

Artistic view of a SEM picture of ALPIDE cross section

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSIDERGY** Office of 45

- Issues to address similar to beginning of HL-LHC technology development
	- Radiation tolerance: currently demonstrated to 2×10^{15} n_{eq} cm²
		- \triangleright Need another factor of 2-20
	- Current devices reticle size $(-2x2 \text{ cm}^2)$
		- Need to figure out how to package and provide power, clock & data services for 100s of m2 of detectors
	- Need to find solution to balance segmentation and readout bandwidth

- ATLAS is making a significant upgrade to its detector to cope and thrive in the HL-LHC environment.
	- Made possible by two decades of technology development
	- New silicon inner tracker (ITk) will maintain or improve on the performance of the current detector (with 200 pile-up collision)
- The ITk is beginning pre-production phase Production will be completed in the next 4 years.
- This successful upgrade will enable us to maximize the physics potential from the HL-LHC dataset

Backup

A. Affolder (Santa Cruz) Birmingham Particle Physics Group Seminar Control Con

High-Granularity Timing Detector

- New HGTD detector (based on LGAD) in $2.4 < |n| < 4.0$ to disentangle pile-up by using timing information
	- <70 ps resolution per hit, 4 layers of silicon modules, at least 2 hits per track
	- Provides bunch-by-bunch luminosity
- Current Status:

for PARTICLE PHYSIC **UC SANTA CRUZ**

- First tests of full-size FE ASIC (ALTIROC 2) with LGAD sensors demonstrate required resolution
- Single-event burst events seen in sensor test beam
	- Established maximum field per sensor thickness
	- Prototype sensors met radiation tolerance requirements below this critical field
- Design of modules, services, mechanics progressing

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSIDERGY** Science 49

 70

Liquid Argon Calorimeter (LAr) WATLAS **UC SANTA CRUZ**

- New on-detector and off-detector electronics
	- 40 MHz continuous readout
		- Pre-amp/shaper: 16-bit dynamic range (from 50 MeV to 3 TeV) with 11-bit precision
		- ADC: 2 overlapping 14-bit gains (12-bits SAR + DRE)
	- Improved radiation hardness
- New LV power supplies in radiation zone for on-detector electronics
- Major technical progress in all areas
	- Last on-detector ASIC prototypes in hand and testing well
		- \triangleright Building toward $\frac{1}{4}$ loaded FEB2 in 2022
	- **Prototype off-detector elements proceeding**

Burg Stat. Unc. HH->bbyy Single H **bbyy** Reducible **Others**

100 105 110 115 120 125 130 135 140 145 150 $m_{\gamma\gamma}$ [GeV]

v4

Prototype Pre-amp/Shaper (ALFE2- TSMC 130 nm)

Prototype 14 bit ADC (COLUTA- TSMC 65 nm)

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSIDERGY** Science 50

Hadron Calorimeter (Tile)

- Updated readout/trigger electronics to 40 MHz
- Addition layers of sMDT, RPC, and TGC to improve coverage, trigger uniformity & momentum resolution, fake rates
- Current status
	- sMDT: chambers in production, electronics near pre-production
	- RPC: FE prototypes submitted, prototype chamber nearly complete
	- TGC: Triplet prototype completed, FE ASIC production complete

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSCRETION** Science 52

Upgrade trigger and data acquisition to allow efficient selection of events

- Exploits full detector granularity in single level trigger
- Improved muon trigger efficiency
- **Benefits from extended tracking coverage**

Connection between FE electronics and data acquisition via FELIX

Custom-designed PCIe I/O cards in a commodity server with up to 100 Gbps bandwidth

Data rate achievable

- Level 0: 1 MHz, \sim 5.2 TB/s, latency 10 µs
	- \triangleright LHC: 100 kHz, ~290 GB/s, latency 2.5 us
- Event Farm: 10 kHz, \sim 52 GB/s
	- \triangleright LHC: 1 kHz, \sim 2.9 GB/s

Current Status:

Prototypes of FELIX, fFEX, L0Muon Trigger, & Global Trigger under evaluation

GCM/GRM prototype L0 muon trigger prototype FELIX Phase-II prototype FFEX prototype v2b

A. Affolder (Santa Cruz) **Birmingham Particle Physics Group Seminar CONSCRIPTION** Science 53

