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GW UHF: new experimental proposals

o Laser interferometers

o Optically levitated sensors

o Polarisation rotation

o Microwave resonant cavities

o GW magnon resonance

o Magnetic conversion: inverse Gertsenshtein effect

o …



Outline

Magnetic conversion of GWs in static magnetic field 

Axion experiments and magnetic conversion

Experimental UHF GWs upper limits

Prospect of UHF GWs in upgraded axion experiments

HF GWs using interferometry

Conclusions



MAGNETIC 
CONVERSION? 



Magnetic conversion: not a new idea

Electromagnetic waves (photons) can transform into gravitational 
waves (gravitons) in the presence of a constant external magnetic 
field, Gertsenshtein (1962), Lupanov (1967). 

The reverse process 𝑔 → 𝛾 was considered by Mitskevich (1969), 
Boccaletti, De Sabbata, Fortini and Gualdi (1970), Zel’dovich (1973) 
etc. 

For an extended region of a magnetic field in vacuum, there are 
coherent oscillations of GW in EM and vice versa in complete analogy 
with neutrino oscillations. 



Laboratory magnetic 
conversion detection

■ Examples of an experimental conceptual 
design Prof. Mike Cruise

■ Requirements: single photon detectors, 
aperture, field strength, cross section and 
directionality.

Credit Mike Cruise Class. Quantum Grav. 29 (2012) 095003 (12pp) 



Magnetic conversion (Inverse Gertsenshtein effect)

■ Gravitational-wave propagating in magnetic fields convert into photons. 
Gertsenshtein, Sov. Phys., JETP 14, 84 (1962), G. A. Lupanov JETP 25, 76 (1967) 

Source Magnetic field Photon detector



AXION EXPERIMENTS 



Axion search using laboratory static magnetic fields

■ Axions are generated in the magnetic field coupled to two photons.

■ Axions, in the second region of the magnetic field, decay into photons. 



ALPS (Axion-Like Particle Search) DESY Germany

■ Magnet provided form HERA particle 
accelerator working at liquid helium (4 K).

■ Magnetic field: 𝐵=5 T.

■ Length: 𝐿=2×4.3 m.

■ Photodetector @ 𝜆 = 532 nm PIXIS CCD.

■ Data acquisition 2009-2010.

■ Excluded detection @ 95% confidence 
interval.
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FIG. 1: Graphic representation of the experimental setup aiming at the detection of WISPs. The searched-for electromagnetic
waves is a product of the hypothetical WISP decaying in the constant magnetic field region. By analogy, the photons detected
can also be due to the passages of GWs propagating in the constant magnetic field.

decay into electromagnetic radiation is located on both sides of a HERA superconducting dipole magnet operating
in a liquid Helium at a temperature of 4 K. The HERA dipole provides a magnetic field of 5 T in a length of 8.8 m
which was divided in two equal lengths of 4.3 m, separated by a “wall”. One region serves the photon conversions
into WISPs and the other serves the reverse process decaying WISPs into photons.

The electromagnetic radiation, generated by the decay of the WIPSs in the magnetic field, passes through a
connection to a light-tight box in which a mirror redirects signal photons into a lens (focal length f = 40mm) which
focuses the light onto a ⇡ 30 µm diameter beam spot on the CCD camera.

ii) OSQAR experiment at CERN [10]
The OSQAR experiment performed the last experimental run in 2015, and the specific characteristics of the

experimental setup are found in [9, 10]. The OSQAR collaboration has used two LHC superconducting dipole
magnets separated by an optical barrier, (for a conceptual scheme see Fig. 1). The LHC dipole magnet is cooled down
to 1.9 K with a superfluid He and generates, in the beam pipe, a constant magnetic field of 9 T, along a length of
14,3 m. The vacuum pipe traverses through the magnetic field region with a total gas pressure of (10�6�10�7) mbar.
Data acquisition has been performed in two essential runs with two di↵erent CCD’s with di↵erent quantum e�ciency.
To focus the generated photons of the beam onto the CCD, an optical lens with a focal length of 100 mm has been
used, installed in front of the detector.

iii) CAST experiment at CERN [11]
The CERN Axion Solar Telescope (CAST) experiment has the aim to detect or set upper limits on the flux of the

hypothetical low-mass WISPs produced by the Sun. To test this prediction, a used refurbished CERN superconducting
dipole magnet of 9 T and 9 m length has been used. The solar Axions with expected energies in the keV range can
be converted into X-rays in the constant magnetic field, and a X-ray detector has been used to performed runs in the
time period 2013 - 2015. To optimise the cross section both the two parallel pipes which pass through the magnet
have been used which correspond to (2x14.5 cm2). The magnet is mounted on a movable platform to follow the sun
during sunrise and sunset for about 1.5 hours. The CAST detector mounted on the sunrise system had installed a
telescope with a focal length of 1.5 m enhanced for (0.5-10) keV energy range to focus into a Micromegas detector
and the specific of the quantum e�ciency which have been used are found [37].

In the WISPs generation cavity, the photons interacting with the transverse magnetic field generate gravitons of
the same frequency and successively can be converted into photons in the magnetic field of the conversion cavity
(the case for the ALPS and OSQAR experiment). The amplitude estimation for the ALPS experiment which is the
only one which usees a Fabry-Perot cavity to enhance the number of photons (power build of 1.2 kW) corresponds
to an amplitude less than hc  10�49 which is far smaller than the magnitude of GWs background estimated at the
frequency region of detection.

VI. MINIMAL DETECTION GW AMPLITUDE

In sec. IV, we calculated the energy density and density parameter per logarithmic energy interval of the formed
electromagnetic radiation in the GRAPH mixing due to the interaction of a stochastic background of GWs with a
transverse and constant magnetic field. The expressions found in sec. IV are intrinsic expressions related to the
stochastic background of photons generated in the GRAPH mixing and have nothing to do with the detector. In
this section we want to connect the GW amplitude found in sec. IV to the detector characteristic and measurable
quantities. Consider the case when we ignore the generation of the WISPs (the dotted part in the Fig. 1) and focus
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FIG. 1: Graphic representation of the experimental setup aiming at the detection of WISPs. The searched-for electromagnetic
waves is a product of the hypothetical WISP decaying in the constant magnetic field region. By analogy, the photons detected
can also be due to the passages of GWs propagating in the constant magnetic field.
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which was divided in two equal lengths of 4.3 m, separated by a “wall”. One region serves the photon conversions
into WISPs and the other serves the reverse process decaying WISPs into photons.

The electromagnetic radiation, generated by the decay of the WIPSs in the magnetic field, passes through a
connection to a light-tight box in which a mirror redirects signal photons into a lens (focal length f = 40mm) which
focuses the light onto a ⇡ 30 µm diameter beam spot on the CCD camera.

ii) OSQAR experiment at CERN [10]
The OSQAR experiment performed the last experimental run in 2015, and the specific characteristics of the

experimental setup are found in [9, 10]. The OSQAR collaboration has used two LHC superconducting dipole
magnets separated by an optical barrier, (for a conceptual scheme see Fig. 1). The LHC dipole magnet is cooled down
to 1.9 K with a superfluid He and generates, in the beam pipe, a constant magnetic field of 9 T, along a length of
14,3 m. The vacuum pipe traverses through the magnetic field region with a total gas pressure of (10�6�10�7) mbar.
Data acquisition has been performed in two essential runs with two di↵erent CCD’s with di↵erent quantum e�ciency.
To focus the generated photons of the beam onto the CCD, an optical lens with a focal length of 100 mm has been
used, installed in front of the detector.

iii) CAST experiment at CERN [11]
The CERN Axion Solar Telescope (CAST) experiment has the aim to detect or set upper limits on the flux of the

hypothetical low-mass WISPs produced by the Sun. To test this prediction, a used refurbished CERN superconducting
dipole magnet of 9 T and 9 m length has been used. The solar Axions with expected energies in the keV range can
be converted into X-rays in the constant magnetic field, and a X-ray detector has been used to performed runs in the
time period 2013 - 2015. To optimise the cross section both the two parallel pipes which pass through the magnet
have been used which correspond to (2x14.5 cm2). The magnet is mounted on a movable platform to follow the sun
during sunrise and sunset for about 1.5 hours. The CAST detector mounted on the sunrise system had installed a
telescope with a focal length of 1.5 m enhanced for (0.5-10) keV energy range to focus into a Micromegas detector
and the specific of the quantum e�ciency which have been used are found [37].

In the WISPs generation cavity, the photons interacting with the transverse magnetic field generate gravitons of
the same frequency and successively can be converted into photons in the magnetic field of the conversion cavity
(the case for the ALPS and OSQAR experiment). The amplitude estimation for the ALPS experiment which is the
only one which usees a Fabry-Perot cavity to enhance the number of photons (power build of 1.2 kW) corresponds
to an amplitude less than hc  10�49 which is far smaller than the magnitude of GWs background estimated at the
frequency region of detection.

VI. MINIMAL DETECTION GW AMPLITUDE

In sec. IV, we calculated the energy density and density parameter per logarithmic energy interval of the formed
electromagnetic radiation in the GRAPH mixing due to the interaction of a stochastic background of GWs with a
transverse and constant magnetic field. The expressions found in sec. IV are intrinsic expressions related to the
stochastic background of photons generated in the GRAPH mixing and have nothing to do with the detector. In
this section we want to connect the GW amplitude found in sec. IV to the detector characteristic and measurable
quantities. Consider the case when we ignore the generation of the WISPs (the dotted part in the Fig. 1) and focus

´ Magnets provided from spare LHC particle 
accelerator working @ superfluid helium (2 K).

´ Magnetic field Field: 𝐵 = 9 T.

´ Magnet length: 𝐿 = 14.3 m.

´ Photodetector @ 𝜆 = 532 nm.

´ Data acquisition 2014-2015.

´ Excluded detection @ 95% confidence interval.



CAST (CERN Axion Solar Telescope) CERN Switzerland

´ Magnet provided from spare LHC particle 
accelerator working @ superfluid helium (2 K).

´ Magnetic field: 𝐵 = 9 Tesla.

´ Length: 𝐿 = 9m.

´ X-Ray detector @ 𝜆 = 3 nm.

´ Data acquisition 2013-2015.

´ Excluded detection @ 95% confidence interval.



GWs upper limits: ALPS, OSQAR, CAST

Detectors

■ Cannot point deliberately to the emitting sources, 
except CAST

■ GWs upper limits at Ultra-High-Frequencies (UHF): 
optical 5×1014 Hz and X-ray 1018 Hz

Suited sources?

■ Requirements: stochastic, isotropic, stationary, 
and Gaussian gravitational-waves.



UHF GWS SOURCES



UHF GW sources: early universe
Primordial BH collisions and evaporations

Phys.Rev.D 84 (2011) 024028

• Cosmological energy density of the order of 

𝑚!" =1 g 𝑚!" = 10# g



UHF GW sources: thermal plasma in the sun

S. Weinberg (ed.) Gravitation and Cosmology. Wiley, New York, p. 266 (1972)

• Gravitational radiation emitted by 
Coulomb collision in plasma

• Hydrogen plasma in the solar core
• Collision frequency 1015Hz
• Thermal collisions in the solar core 

produce about 108 watts of 
gravitational radiation



UHF GW sources: BH-BH collisions in 5D gravity

• Seahra and Clarkson have 
calculated the GW emission in 
5-D gravity when stellar mass 
black holes fall into a black 
hole. 

• The normal LF radiation from 
such a system is emitted plus 
an excitation of the brane 
separation itself 

Chris Clarkson and Sanjeev S Seahra 2007 Class. Quantum Grav. 24 F33



UHF GW sources: BH-BH collisions in 5D gravity

Chris Clarkson and Sanjeev S Seahra 2007 Class. Quantum Grav. 24 F33



MAGNETIC CONVERSION 
IN AXION EXPERIMENTS 



GWs propagating in static magnetic fields
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III. PROPAGATION OF GRAVITATIONAL WAVES IN A CONSTANT MAGNETIC FIELD

In this section we review the process of Graviton-to-Photon (GRAPH) mixing in an external magnetic field, namely
a magnetic field constant in space and time. In this section we closely follow Refs. [13] and work with the rationalized
Lorentz-Heaviside natural units c = ~ = kB = µ0 = ✏0 = 1. In order to describe the GRAPH mixing it is necessary
first to start with the total Lagrangian density of the GRAPH mixing L. In our case, it is given by the sum of the
following terms

L = Lgr + Lem, (1)

where Lgr and Lem are respectively the Lagrangian densities of the gravitational and electromagnetic fields. These
terms are respectively given by

Lgr =
1

2
R, Lem = �1

4
Fµ⌫F
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2

Z
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0
Aµ(x)⇧
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where R is the Ricci scalar, g is the metric determinant, Fµ⌫ is the total electromagnetic field tensor, 2 ⌘ 16⇡GN

with GN being the Newtonian constant and ⇧µ⌫ is the photon polarization tensor in a magnetized medium.
The equations of motion from (1) and (2) for propagating electromagnetic and GW fields components, Aµ and hij ,

propagating in an external magnetic field are given by [13]
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where A
µ = (�,A) is the electromagnetic vector-potential and B̄i are the components of the external magnetic field

vector B̄. In obtaining the system (3) we made use of the TT-gauge conditions for the GWs tensor h0µ = 0, hi
i = 0

and @
j
hij = 0. As shown in details in Ref. [13], the system (3) can be linearized by making use of the slowly varying

envelope approximation (SVEA) which is a WKB-like approximation for slowly varying external magnetic field of
spacetime coordinates. In this approximation, and for propagation along the observer’s ẑ axis in a given cartesian
coordinate system, equations (3) can be written as [13]

(! + i@z) (z,!, ẑ)I +M(z,!) (z,!, ẑ) = 0, (4)

where in (4) I is the unit matrix,  (z,!, ẑ) = (h⇥, h+, Ax, Ay)T is a four component field with h⇥,+ being the usual
GW cross and plus polarization states of GWs and Ax,y are the usual propagating transverse photon states. In (4)
M(z,!) is the mass mixing matrix which is given by
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where the elements of the mass mixing matrix M are given by M
x
g� =  kB̄x/(! + k), M

y
g� =  kB̄y/(! + k),

Mx = �⇧xx/(! + k), My = �⇧yy/(! + k). Here MCF = �⇧xy/(! + k) is a term which includes a combination
of the Cotton-Mouton and the Faraday e↵ects in a plasma and which depends on the magnetic field direction with
respect to the photon propagation. Here ! is the total energy of the fields, namely ! = !gr = !� . In this work all
the particles participating in the mixing are assumed to be relativistic, namely ! + k ' 2k with k being magnititude
the photon and GW wave-vector.

The system of di↵erential equations (4) does not have closed solutions in the case when the GRAPH mixing occurs
in arbitrary matter that evolves in space and time, namely in the case when the system of di↵erential equations is
with variable coe�cients such that in cosmological scenarios. However, in the case of GRAPH mixing in laboratory
external magnetic field, the system (4) can be simplified by considering a specific propagation of GWs with respect
to the magnetic field direction and by considering the propagation in the external field where is not present a gas or
a plasma (see below). For example, first one can choose the magnetic field to be transverse to the photon direction
of propagation such as B̄ = (B̄x, 0, 0) where we have M

y
g� = 0 and MCF = 0. Second, if there is a gas or a plasma in

addition to the external magnetic field, usually we have that Mx 6= My which essentially means that the transverse
photon states have di↵erent indexes of refraction. In the case when one is able to achieve almost a pure vacuum in
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and @
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hij = 0. As shown in details in Ref. [13], the system (3) can be linearized by making use of the slowly varying
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of the Cotton-Mouton and the Faraday e↵ects in a plasma and which depends on the magnetic field direction with
respect to the photon propagation. Here ! is the total energy of the fields, namely ! = !gr = !� . In this work all
the particles participating in the mixing are assumed to be relativistic, namely ! + k ' 2k with k being magnititude
the photon and GW wave-vector.

The system of di↵erential equations (4) does not have closed solutions in the case when the GRAPH mixing occurs
in arbitrary matter that evolves in space and time, namely in the case when the system of di↵erential equations is
with variable coe�cients such that in cosmological scenarios. However, in the case of GRAPH mixing in laboratory
external magnetic field, the system (4) can be simplified by considering a specific propagation of GWs with respect
to the magnetic field direction and by considering the propagation in the external field where is not present a gas or
a plasma (see below). For example, first one can choose the magnetic field to be transverse to the photon direction
of propagation such as B̄ = (B̄x, 0, 0) where we have M
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g� = 0 and MCF = 0. Second, if there is a gas or a plasma in

addition to the external magnetic field, usually we have that Mx 6= My which essentially means that the transverse
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where in (4) I is the unit matrix,  (z,!, ẑ) = (h⇥, h+, Ax, Ay)T is a four component field with h⇥,+ being the usual
GW cross and plus polarization states of GWs and Ax,y are the usual propagating transverse photon states. In (4)
M(z,!) is the mass mixing matrix which is given by

M(z,!) =

0

BB@

0 0 �iM
x
g� iM

y
g�

0 0 iM
y
g� iM

x
g�

iM
x
g� �iM

y
g� Mx MCF

�iM
y
g� �iM

x
g� M

⇤
CF

My

1

CCA , (5)

where the elements of the mass mixing matrix M are given by M
x
g� =  kB̄x/(! + k), M

y
g� =  kB̄y/(! + k),

Mx = �⇧xx/(! + k), My = �⇧yy/(! + k). Here MCF = �⇧xy/(! + k) is a term which includes a combination
of the Cotton-Mouton and the Faraday e↵ects in a plasma and which depends on the magnetic field direction with
respect to the photon propagation. Here ! is the total energy of the fields, namely ! = !gr = !� . In this work all
the particles participating in the mixing are assumed to be relativistic, namely ! + k ' 2k with k being magnititude
the photon and GW wave-vector.

The system of di↵erential equations (4) does not have closed solutions in the case when the GRAPH mixing occurs
in arbitrary matter that evolves in space and time, namely in the case when the system of di↵erential equations is
with variable coe�cients such that in cosmological scenarios. However, in the case of GRAPH mixing in laboratory
external magnetic field, the system (4) can be simplified by considering a specific propagation of GWs with respect
to the magnetic field direction and by considering the propagation in the external field where is not present a gas or
a plasma (see below). For example, first one can choose the magnetic field to be transverse to the photon direction
of propagation such as B̄ = (B̄x, 0, 0) where we have M

y
g� = 0 and MCF = 0. Second, if there is a gas or a plasma in

addition to the external magnetic field, usually we have that Mx 6= My which essentially means that the transverse
photon states have di↵erent indexes of refraction. In the case when one is able to achieve almost a pure vacuum in



GWs propagating in static magnetic fields

3

III. PROPAGATION OF GRAVITATIONAL WAVES IN A CONSTANT MAGNETIC FIELD

In this section we review the process of Graviton-to-Photon (GRAPH) mixing in an external magnetic field, namely
a magnetic field constant in space and time. In this section we closely follow Refs. [13] and work with the rationalized
Lorentz-Heaviside natural units c = ~ = kB = µ0 = ✏0 = 1. In order to describe the GRAPH mixing it is necessary
first to start with the total Lagrangian density of the GRAPH mixing L. In our case, it is given by the sum of the
following terms

L = Lgr + Lem, (1)

where Lgr and Lem are respectively the Lagrangian densities of the gravitational and electromagnetic fields. These
terms are respectively given by

Lgr =
1

2
R, Lem = �1

4
Fµ⌫F

µ⌫ � 1

2

Z
d
4
x
0
Aµ(x)⇧

µ⌫(x, x0)A⌫(x
0), (2)

where R is the Ricci scalar, g is the metric determinant, Fµ⌫ is the total electromagnetic field tensor, 2 ⌘ 16⇡GN

with GN being the Newtonian constant and ⇧µ⌫ is the photon polarization tensor in a magnetized medium.
The equations of motion from (1) and (2) for propagating electromagnetic and GW fields components, Aµ and hij ,

propagating in an external magnetic field are given by [13]

r2
A

0 = 0,

⇤Ai +

✓Z
d
4
x
0⇧ij(x, x0)Aj(x

0)

◆
+ @

i
@µA

µ =  @µ[h
µ�

F̄
i
� � h

i�
F̄

µ
� ],

⇤hij = � (BiB̄j + B̄iBj + B̄iB̄j), (3)

where A
µ = (�,A) is the electromagnetic vector-potential and B̄i are the components of the external magnetic field

vector B̄. In obtaining the system (3) we made use of the TT-gauge conditions for the GWs tensor h0µ = 0, hi
i = 0

and @
j
hij = 0. As shown in details in Ref. [13], the system (3) can be linearized by making use of the slowly varying

envelope approximation (SVEA) which is a WKB-like approximation for slowly varying external magnetic field of
spacetime coordinates. In this approximation, and for propagation along the observer’s ẑ axis in a given cartesian
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where in (4) I is the unit matrix,  (z,!, ẑ) = (h⇥, h+, Ax, Ay)T is a four component field with h⇥,+ being the usual
GW cross and plus polarization states of GWs and Ax,y are the usual propagating transverse photon states. In (4)
M(z,!) is the mass mixing matrix which is given by

M(z,!) =

0

BB@

0 0 �iM
x
g� iM

y
g�

0 0 iM
y
g� iM

x
g�

iM
x
g� �iM

y
g� Mx MCF

�iM
y
g� �iM

x
g� M

⇤
CF

My

1

CCA , (5)

where the elements of the mass mixing matrix M are given by M
x
g� =  kB̄x/(! + k), M

y
g� =  kB̄y/(! + k),

Mx = �⇧xx/(! + k), My = �⇧yy/(! + k). Here MCF = �⇧xy/(! + k) is a term which includes a combination
of the Cotton-Mouton and the Faraday e↵ects in a plasma and which depends on the magnetic field direction with
respect to the photon propagation. Here ! is the total energy of the fields, namely ! = !gr = !� . In this work all
the particles participating in the mixing are assumed to be relativistic, namely ! + k ' 2k with k being magnititude
the photon and GW wave-vector.

The system of di↵erential equations (4) does not have closed solutions in the case when the GRAPH mixing occurs
in arbitrary matter that evolves in space and time, namely in the case when the system of di↵erential equations is
with variable coe�cients such that in cosmological scenarios. However, in the case of GRAPH mixing in laboratory
external magnetic field, the system (4) can be simplified by considering a specific propagation of GWs with respect
to the magnetic field direction and by considering the propagation in the external field where is not present a gas or
a plasma (see below). For example, first one can choose the magnetic field to be transverse to the photon direction
of propagation such as B̄ = (B̄x, 0, 0) where we have M

y
g� = 0 and MCF = 0. Second, if there is a gas or a plasma in

addition to the external magnetic field, usually we have that Mx 6= My which essentially means that the transverse
photon states have di↵erent indexes of refraction. In the case when one is able to achieve almost a pure vacuum in

3

III. PROPAGATION OF GRAVITATIONAL WAVES IN A CONSTANT MAGNETIC FIELD

In this section we review the process of Graviton-to-Photon (GRAPH) mixing in an external magnetic field, namely
a magnetic field constant in space and time. In this section we closely follow Refs. [13] and work with the rationalized
Lorentz-Heaviside natural units c = ~ = kB = µ0 = ✏0 = 1. In order to describe the GRAPH mixing it is necessary
first to start with the total Lagrangian density of the GRAPH mixing L. In our case, it is given by the sum of the
following terms

L = Lgr + Lem, (1)

where Lgr and Lem are respectively the Lagrangian densities of the gravitational and electromagnetic fields. These
terms are respectively given by

Lgr =
1

2
R, Lem = �1

4
Fµ⌫F

µ⌫ � 1

2

Z
d
4
x
0
Aµ(x)⇧

µ⌫(x, x0)A⌫(x
0), (2)

where R is the Ricci scalar, g is the metric determinant, Fµ⌫ is the total electromagnetic field tensor, 2 ⌘ 16⇡GN

with GN being the Newtonian constant and ⇧µ⌫ is the photon polarization tensor in a magnetized medium.
The equations of motion from (1) and (2) for propagating electromagnetic and GW fields components, Aµ and hij ,

propagating in an external magnetic field are given by [13]

r2
A

0 = 0,

⇤Ai +

✓Z
d
4
x
0⇧ij(x, x0)Aj(x

0)

◆
+ @

i
@µA

µ =  @µ[h
µ�

F̄
i
� � h

i�
F̄

µ
� ],

⇤hij = � (BiB̄j + B̄iBj + B̄iB̄j), (3)

where A
µ = (�,A) is the electromagnetic vector-potential and B̄i are the components of the external magnetic field

vector B̄. In obtaining the system (3) we made use of the TT-gauge conditions for the GWs tensor h0µ = 0, hi
i = 0

and @
j
hij = 0. As shown in details in Ref. [13], the system (3) can be linearized by making use of the slowly varying

envelope approximation (SVEA) which is a WKB-like approximation for slowly varying external magnetic field of
spacetime coordinates. In this approximation, and for propagation along the observer’s ẑ axis in a given cartesian
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µ = (�,A) is the electromagnetic vector-potential and B̄i are the components of the external magnetic field

vector B̄. In obtaining the system (3) we made use of the TT-gauge conditions for the GWs tensor h0µ = 0, hi
i = 0

and @
j
hij = 0. As shown in details in Ref. [13], the system (3) can be linearized by making use of the slowly varying

envelope approximation (SVEA) which is a WKB-like approximation for slowly varying external magnetic field of
spacetime coordinates. In this approximation, and for propagation along the observer’s ẑ axis in a given cartesian
coordinate system, equations (3) can be written as [13]

(! + i@z) (z,!, ẑ)I +M(z,!) (z,!, ẑ) = 0, (4)

where in (4) I is the unit matrix,  (z,!, ẑ) = (h⇥, h+, Ax, Ay)T is a four component field with h⇥,+ being the usual
GW cross and plus polarization states of GWs and Ax,y are the usual propagating transverse photon states. In (4)
M(z,!) is the mass mixing matrix which is given by

M(z,!) =

0
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where the elements of the mass mixing matrix M are given by M
x
g� =  kB̄x/(! + k), M

y
g� =  kB̄y/(! + k),

Mx = �⇧xx/(! + k), My = �⇧yy/(! + k). Here MCF = �⇧xy/(! + k) is a term which includes a combination
of the Cotton-Mouton and the Faraday e↵ects in a plasma and which depends on the magnetic field direction with
respect to the photon propagation. Here ! is the total energy of the fields, namely ! = !gr = !� . In this work all
the particles participating in the mixing are assumed to be relativistic, namely ! + k ' 2k with k being magnititude
the photon and GW wave-vector.

The system of di↵erential equations (4) does not have closed solutions in the case when the GRAPH mixing occurs
in arbitrary matter that evolves in space and time, namely in the case when the system of di↵erential equations is
with variable coe�cients such that in cosmological scenarios. However, in the case of GRAPH mixing in laboratory
external magnetic field, the system (4) can be simplified by considering a specific propagation of GWs with respect
to the magnetic field direction and by considering the propagation in the external field where is not present a gas or
a plasma (see below). For example, first one can choose the magnetic field to be transverse to the photon direction
of propagation such as B̄ = (B̄x, 0, 0) where we have M

y
g� = 0 and MCF = 0. Second, if there is a gas or a plasma in

addition to the external magnetic field, usually we have that Mx 6= My which essentially means that the transverse
photon states have di↵erent indexes of refraction. In the case when one is able to achieve almost a pure vacuum in



GWs propagating in static magnetic fields

Converted EMWs stochastic flux Measured EMWs flux from the CCD

• EMWs flux:

• Stochastic GWs 
tensor

• Average value:



Parameters necessary to compute the characteristic amplitude

■ 𝑁$%& - detected number of photons per second, 

■ 𝐴 - cross-section of the detector,

■ 𝐵 - magnetic field amplitude,

■ 𝐿 - distance extension of the magnetic field,

■ 𝜖𝛾(𝜔) - quantum efficiency of the detector,

■ Δ𝑓 - operation frequency of the CCD. 
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✏�(!) & CCD N (mHz) A (m2) B (T) L (m)
ALPS I see Fig 2 [8] 0.61 0.5⇥ 10�3 5 4.3

OSQAR I see Fig 2 [9] 1.76 0.5⇥ 10�3 9 14.3
OSQAR II see Fig 2 [10] 1.14 0.5⇥ 10�3 9 14.3
CAST see Fig 2 [11] 0.03 2.9⇥ 10�3 9 9.26

TABLE I: Relevant characteristics of the experimental setups, as operated for the detection of WISPs, and used for GW upper
limits in this work. The reported quantities are used to estimate the minimum detectable GW amplitude through the GRAPH
mixing in a constant and transverse magnetic field.

FIG. 2: Quantum e�ciency as a function of the wavelength. In the upper panel: the quantum e�ciency of the detectors using
the method “light shining through a wall”; in the lower panel: the quantum e�ciency of the X-ray detector used in the CAST
experiment.

FIG. 3: Exclusion plots of the minimum detectable GW amplitude hmin

c as a function of the frequency f , deduced by the
measured data of WISPs aiming detection experiments.
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✏�(!) Nexp (mHz) A (m2) B (T) L (m) �f (Hz)
ALPS I see Fig 2 0.61 0.5⇥ 10�3 5 9 9⇥ 1014

OSQAR I see Fig 2 1.76 0.5⇥ 10�3 9 14.3 5⇥ 1014

OSQAR II see Fig 2 1.14 0.5⇥ 10�3 9 14.3 1⇥ 1015

CAST see Fig 2 0.15 2.9⇥ 10�3 9 9.26 1⇥ 1018

TABLE I: Relevant characteristics of the experimental setups, as operated for the detection of WISPs, and used for GW
upper limits in this work. The reported quantities are used to estimate the minimum detectable GW amplitude through the
graviton-photon mixing in a constant and transverse magnetic field.

count of the CCD detectors at 95% confidence level which allows putting upper limits on the minimal detectable GW
amplitude h

min
c at the same confidence level.

The extracted quantities used to compute the upper limits on h
min
c are summarised in Table I. These experiments

attempting to detect WISPs have used subsequently improved CCDs during di↵erent run phases which is taken into
account in the analysis. The quantum e�ciencies in Table I are represented graphically in Fig. 2 as a function of the
wavelength. We have taken into account that Nexp is normalised to the quantum e�ciency the working frequency of
the WISPs experiments, and the range of the expected photons is imposed by the sensitive frequency range of the
CCD.

The cross-section reported in Table I has been computed, for the ALPS and OSQAR experiments, considering the
area enclosed by the diameter of the lens [44, 45]. Instead, the CAST experiment uses the whole cross-section of the
two beam pipes. Using the data of the Table I and expression (4) it is possible to produce an upper limit plot of the

FIG. 3: Plots of the minimum detectable GW amplitude hmin

c as a function of the frequency f , deduced deduced from the
measured data of the denoted experiments.

GW amplitude, see Fig. 3, due to the conversion of GWs into photons. The region above each curve is the excluded
region. To our knowledge, these are the first experimental upper limits in these frequency regions.

V. PROSPECTS ON DETECTING ULTRA-HIGH FREQUENCY GWS FROM PRIMORDIAL BLACK
HOLES

Graviton-photon mixing maybe a useful path towards the detection of UHF GWs. The actual technology has made
further progress in the detection of single photons and new facilities are intended for WISP search, using higher values
of B and L in order to achieve higher sensitivities. One facility which plans to do so is the ALPS IIc proposal which
consists of two 120 m long strings of 12 HERA magnets each, with a magnetic field of 5.3 T. The scheme of generation
and conversion of the WISPs is still the same, expected an optical resonator is added to the reconversion region.
A follow-up of the CAST telescope is the proposed International Axion Observatory (IAXO). Tab. II represent the
detector parameters of ALPS IIc [49], a possible follow-up named JURA [50], and of the IAXO proposal [52].

Since the working frequency of the detectors is di↵erent we compute the sensitivity to detected GWs, with the
graviton-photon mixing process, in two frequency regions:

• Infrared



UHF GW characteristic amplitude upper limits 



Primordial black hole evaporation and upper limits

■ PBH evaporation: predicted stochastic isotropic UHF GWs 
background  

■ Sun: thermal activity generates UHF GWs. 
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STRAIN UPPER LIMITS

10-40 
 10-37 
 10-34 
 10-31 
 10-28 
 10-25 
 10-22 
 10-19 
 10-16 
 10-13 
 10-10

St
ra

in
 [1

/√
H

z]

100  102  104  106  108  1010  1012  1014  1016  1018  1020

Frequency [Hz]

LIGO Fermilab Holometer
PRD 95, 063002 (2017) 

waveguide
CQG 23, 22 (2006)

0.75m
PRL 101, 101101 (2008)

graviton-magnon 
resonance

Eur.Phys.J.C 80 (2020) 6, 545

Magnetic conversion
Eur. Phys. J. C (2019) 79:1032 



WHERE TO NEXT?



Graviton to photon conversion and synergies with next generation axion search 
experiments

■ 𝑁!"# - detected number of photons per second

■ 𝐴 - cross-section of the detector

■ 𝐵 - magnetic field amplitude

■ 𝐿 - distance extension of the magnetic field

■ 𝜖𝛾(𝜔) - quantum efficiency of the detector

■ Δ𝑓 - operation frequency of the CCD
TES



ALPSII: Magnets installation

Page 24

ALPS II magnet string construction

ALPS II and UHF-GW options | UHF-GW workshop, CERN, 13 October 2021 | Axel Lindner

Magnet installation

ALPS II under construction (Credit: DESY)



ALPS II

ALPS II under construction as of October 2020 (Credit: DESY)



ALPS II: Fabry-Perot cavities 

120 m 120 m

Fabry-Perot cavities



Graviton-to-photon in the conversion Fabry-Perot cavity



Future laboratory axion experiments: JURA, IAXO.
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FIG. 4: In the upper panel conceptual scheme of the experimental setup ALPS II and a possible follow-up named JURA where
we note the addition of the FP cavity in the right-hand side. Our prediction for the sensitivity of the minimal amplitude of
hmin

c used the right-hand side process, where the photons generated via graviton-photon mixing are resonantly enhanced in
the Fabry-Perot cavity. In the lower panel, the Fabry-Perot resonator concept is described where Egraph is the electric field
generated from the graviton photon mixing in the cavity, Ecirc is circulating electric field accumulated inside the resonator after
transmission losses on both mirrors, Etrans is transmitted electric field through the mirrors and L the length of the cavity.

✏� Ndark (Hz) A (m2) B (T) L (m) F
ALPS IIc 0.75 ⇡ 10�6 ⇡ 2⇥ 10�3 5.3 120 40 000
JURA 1 ⇡ 10�6 ⇡ 8⇥ 10�3 13 960 100 000
IAXO 1 ⇡ 10�4 ⇡ 21 2.5 25 -

TABLE II: Parameters of APLs IIc, JURA and IAXO proposals used to estimate the predicted minimum detectable GW
amplitude through the graviton-photon mixing in their constant and transverse magnetic field: ✏� is the e�ciency photodetector
at 1064 nm, Ndark correspond to the number of photons per unit of time limited by the dark count sensitivity, A is the cross-
section, B (T) is the magnetic field magnitude, L is the magnetic field length and F is the finesse of the cavity.

One of the most important changes that ALPS IIc, with respect to the ALPS I and OSQAR, is the use of
a Fabry-Perot cavity to enhance the decay processes of WISPs into photons, see Fig. 4. The Fabry-Perot
cavity will allow just a range of electromagnetic waves to be built up resonantly, within the cavity bandwidth:
�!c = �!FSR/F where F = ⇡/(1 � R) is the cavity finesse, �!FSR = ⇡/L is the cavity free spectral range,
and R is the reflectance of the mirrors. The Fabry-Perot cavity enhances the decay rate of WISPs to photons
[53]. This is an essential aspect because it will also account for the transition of gravitons into photons [54].
Stochastic broadband GWs converted into electromagnetic radiation would excite several resonances of the
cavity at frequencies !c ± n�!FSR, where �!c is the cavity frequency bandwidth, and n is an integer number
with its range depending on the coating of the mirrors. To calculate the response of the Fabry-Perot resonator,
we use of the circulating field approach [55, 56], as displayed in the lower panel of Fig. 4. We assume a steady
state approximation to derive the circulating electric field ~Ecirc inside the cavity and the mirrors have the same
reflectance R and transmittance T . Defining the phase shift after one round trip 2�(!) = 2!L, the accumulated
electric field ~Ecirc after a large number of reflections (which can be assumed infinite in the calculations below)
of the electric field ~E

graph generated in the GRAPH mixing is:

IAXO (Armengaud et al. JINST 9 T05002 (2014)) JURA

1000 m 1000 m



Prospects
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UPGRADES?



ALPS II: modifications

TES 
infrared

TES 
infrared

• Cross correlation
• Reduction background noise 
• Possible identification of GW’s 

transients
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ALPS II without FP cavities 

TES infrared

TES GHzCCD

• Double length 2x106 m of the 
magnetic field.

• Possibility to investigate new 
frequency regions

• Interesting region in the GHz!
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Baby IAXO, IAXO

■ Pointing: rotatable platform

■ BH-BH collisions in higher dimensional gravity

Chris Clarkson and Sanjeev S Seahra
2007 Class. Quantum Grav. 24 F33

10 ⨉ CAST (𝐵8𝐿8𝐴)
ℎ9~10:8; @ 1024 − 102* Hz



HF GW’S WITH 
INTERFEROMETRY?



Co-located interferometry up to 250 MHz at Cardiff University

■ Quantization of space-time (main scientific goal) 

■ Dark matter searches 

■ High-frequency gravitational waves (1 - 250 MHz) 



Co-located interferometry up to 250 MHz

Class.Quant.Grav. 38 (2021) 8, 085008



Conclusions

Axion search experiments ALPS I, OSQAR and 
CAST, set first upper limits on stochastic UHF 
GWs.

The upgraded ALPS II, Baby-IAXO/IAXO, 
provide infrastructure to improve the existing 
upper limits for stochastic UHF GWs.

Minor modifications of axion experiments 
could improve sensitivity to UHF GWs.

Axion search experiments are also being 
identified as novel UHF GW detectors.
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